A247497 Triangle read by rows, T(n,k) (n>=0, 0<=k<=n) coefficients of the partial fraction decomposition of rational functions generating the columns of A247495 (the Motzkin polynomials evaluated at nonnegative integers).
1, 1, 1, 2, 3, 2, 4, 10, 12, 6, 9, 33, 62, 60, 24, 21, 111, 300, 450, 360, 120, 51, 378, 1412, 3000, 3720, 2520, 720, 127, 1303, 6552, 18816, 32760, 34440, 20160, 5040, 323, 4539, 30186, 113820, 264264, 388080, 352800, 181440, 40320
Offset: 0
Examples
Triangle starts: [ 1], [ 1, 1], [ 2, 3, 2], [ 4, 10, 12, 6], [ 9, 33, 62, 60, 24], [ 21, 111, 300, 450, 360, 120], [ 51, 378, 1412, 3000, 3720, 2520, 720], [127, 1303, 6552, 18816, 32760, 34440, 20160, 5040]. . [n=3] -> [4,10,12,6] -> 4/(x-1)+10/(x-1)^2+12/(x-1)^3+6/(x-1)^4 = 2*x*(-x+2*x^2+2)/(x-1)^4; generating function of A247495[n,3] = 0,4,14, 36,... [n=4] -> [9,33,62,60,24] -> -9/(x-1)-33/(x-1)^2-62/(x-1)^3-60/(x-1)^4-24/(x-1)^5 = -(2-x-3*x^3+17*x^2+9*x^4)/(x-1)^5; generating function of A247495[n,4] = 2,9,42,137,...
Programs
-
Maple
A247497_row := proc(n) local A, M, p; A := (n,k) -> `if`(type(n-k, odd),0,n!/(k!*((n-k)/2)!^2*((n-k)/2+1))): M := (k,x) -> add(A(k,j)*x^j,j=0..k): # Motzkin polynomial p := expand(sum(x^k*M(n,k),k=0..infinity)); [seq((-1)^(n+1)*coeff(convert(p,parfrac),(x-1)^(-j)),j=1..n+1)] end: seq(print(A247497_row(n)),n=0..7);
Formula
Let M_{n}(x) = sum_{k=0..n} A097610(n,k)*x^k denote the Motzkin polynomials. The T(n,k) are implicitly defined by:
sum_{k=0..n} (-1)^(n+1)*T(n,k)/(x-1)^(k+1) = sum_{k>=0} x^k*M_n(k).
T(n, 0) = A001006(n) (Motzkin numbers).
T(n, n) = A000142(n) = n!.
T(n, 1) = A058987(n+1) for n>=1.
T(n,n-1)= A001710(n+1) for n>=1.