cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A059019 Number of Dyck paths of semilength n with no peak at height 3.

Original entry on oeis.org

1, 1, 2, 4, 9, 22, 58, 163, 483, 1494, 4783, 15740, 52956, 181391, 630533, 2218761, 7888266, 28291588, 102237141, 371884771, 1360527143, 5002837936, 18479695171, 68539149518, 255137783916, 952914971191, 3569834343547, 13410481705795
Offset: 0

Views

Author

N. J. A. Sloane, Feb 12 2001

Keywords

Comments

From Gary W. Adamson, Jul 11 2011: (Start)
a(n) is the upper left term in M^n, where M is an infinite square production matrix in which a column of (1,1,0,0,0,...) is prepended to an infinite lower triangular matrix of all 1's and the rest zeros, as follows:
1, 1, 0, 0, 0, 0, ...
1, 1, 1, 0, 0, 0, ...
0, 1, 1, 1, 0, 0, ...
0, 1, 1, 1, 1, 0, ...
0, 1, 1, 1, 1, 1, ...
... (End)

Examples

			1 + x + 2*x^2 + 4*x^3 + 9*x^4 + 22*x^5 + 58*x^6 + ...
		

Crossrefs

G_1, G_2, G_3, G_4 give A000957, A000108, A059019, A059027, respectively.

Programs

  • Maple
    A059019:=n->add(add(binomial(k,j)*j*binomial(2*n-2*k-j-1,n-k-j)/(n-k),j=0..min(k,n-k)), k=1..n-1)+1: seq(A059019(n),n=0..30); # Wesley Ivan Hurt, Oct 01 2014
  • Mathematica
    CoefficientList[Series[2/(2-3*x+x*Sqrt[1-4*x]), {x, 0, 20}], x]
  • Maxima
    a(n):=sum(sum(binomial(k,j)*j*binomial(2*n-2*k-j-1,n-k-j),j,0,min(k,n-k))/(n-k),k,1,n-1)+1; \\ Vladimir Kruchinin, Oct 02 2013
    
  • PARI
    x='x+O('x^66); Vec( 2/(2-3*x+x*(1-4*x)^(1/2)) ) \\ Joerg Arndt, Oct 02 2013

Formula

G.f.: 2/(2 - 3*x + x*(1-4*x)^(1/2)).
a(n) = Sum_{k=1..n-1} (Sum_{j=0..min(k,n-k)} binomial(k,j)*j*binomial(2*n-2*k-j-1, n-k-j) /(n-k)) + 1. - Vladimir Kruchinin, Oct 02 2013
a(n) ~ 2^(2*n + 2)/(25*sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Dec 10 2013
a(n+1) - a(n) = A135337(n), n > 0. - Philippe Deléham, Oct 02 2014