cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A059022 Triangle of Stirling numbers of order 3.

Original entry on oeis.org

1, 1, 1, 1, 10, 1, 35, 1, 91, 1, 210, 280, 1, 456, 2100, 1, 957, 10395, 1, 1969, 42735, 15400, 1, 4004, 158301, 200200, 1, 8086, 549549, 1611610, 1, 16263, 1827826, 10335325, 1401400, 1, 32631, 5903898, 57962905, 28028000, 1, 65382, 18682014, 297797500
Offset: 3

Views

Author

Barbara Haas Margolius (margolius(AT)math.csuohio.edu), Dec 14 2000

Keywords

Comments

The number of partitions of the set N, |N|=n, into k blocks, all of cardinality greater than or equal to 3. This is the 3-associated Stirling number of the second kind (Comtet) or the Stirling number of order 3 (Fekete).
This is entered as a triangular array. The entries S_3(n,k) are zero for 3k>n, so these values are omitted. The initial entry in the sequence is S_3(3,1).
Rows are of lengths 1,1,1,2,2,2,3,3,3,...

Examples

			There are 10 ways of partitioning a set N of cardinality 6 into 2 blocks each of cardinality at least 3, so S_3(6,2) = 10.
From _Wesley Ivan Hurt_, Feb 24 2022: (Start)
Triangle starts:
  1;
  1;
  1;
  1,   10;
  1,   35;
  1,   91;
  1,  210,   280;
  1,  456,  2100;
  1,  957, 10395;
  1, 1969, 42735, 15400;
  ...
(End)
		

References

  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 222.
  • J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 76.

Crossrefs

Row sums give A006505.
Cf. A008299, A059023, A059024, A059025, A100861, A272352 (column 2), A272982 (column 3), A261724 (column 4), A352611 (column 5).

Programs

  • Maple
    b:= proc(n) option remember; `if`(n=0, 1, add(
          expand(x*b(n-j))*binomial(n-1, j-1), j=3..n))
        end:
    T:= n-> (p-> seq(coeff(p, x, i), i=1..degree(p)))(b(n)):
    seq(T(n), n=3..20);  # Alois P. Heinz, Feb 21 2022
    # alternative
    A059022 := proc(n, k)
        option remember;
        if n<3 then
            0;
        elif n < 6 and k=1 then
            1 ;
        else
            k*procname(n-1, k)+binomial(n-1, 2)*procname(n-3, k-1) ;
        end if;
    end proc:  # R. J. Mathar, Apr 15 2022
  • Mathematica
    S3[3, 1] = S3[4, 1] = S3[5, 1] = 1; S3[n_, k_] /; 1 <= k <= Floor[n/3] := S3[n, k] = k*S3[n-1, k] + Binomial[n-1, 2]*S3[n-3, k-1]; S3[, ] = 0; Flatten[ Table[ S3[n, k], {n, 3, 20}, {k, 1, Floor[n/3]}]] (* Jean-François Alcover, Feb 21 2012 *)

Formula

S_r(n+1,k) = k*S_r(n,k) + binomial(n,r-1)*S_r(n-r+1,k-1); for this sequence, r=3.
G.f.: Sum_{n>=0, k>=0} S_r(n,k)*u^k*t^n/n! = exp(u(e^t - Sum_{i=0..r-1} t^i/i!)).
T(n,k) = Sum_{j=0..min(n/2,k)} (-1)^j*B(n,j)*S_2(n-2j,k-j), where B are the Bessel numbers A100861 and S_2 are the 2-associated Stirling numbers of the second kind A008299. - Fabián Pereyra, Feb 20 2022