A059022 Triangle of Stirling numbers of order 3.
1, 1, 1, 1, 10, 1, 35, 1, 91, 1, 210, 280, 1, 456, 2100, 1, 957, 10395, 1, 1969, 42735, 15400, 1, 4004, 158301, 200200, 1, 8086, 549549, 1611610, 1, 16263, 1827826, 10335325, 1401400, 1, 32631, 5903898, 57962905, 28028000, 1, 65382, 18682014, 297797500
Offset: 3
Examples
There are 10 ways of partitioning a set N of cardinality 6 into 2 blocks each of cardinality at least 3, so S_3(6,2) = 10. From _Wesley Ivan Hurt_, Feb 24 2022: (Start) Triangle starts: 1; 1; 1; 1, 10; 1, 35; 1, 91; 1, 210, 280; 1, 456, 2100; 1, 957, 10395; 1, 1969, 42735, 15400; ... (End)
References
- L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 222.
- J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 76.
Links
- Gilles Bonnet and Anna Gusakova, Concentration inequalities for Poisson U-statistics, arXiv:2404.16756 [math.PR], 2024. See p. 17.
- Antal E. Fekete, Apropos two notes on notation, Amer. Math. Monthly, 101 (1994), 771-778.
- Gergő Nemes, On the Coefficients of the Asymptotic Expansion of n!, J. Int. Seq. 13 (2010), 10.6.6.
Crossrefs
Programs
-
Maple
b:= proc(n) option remember; `if`(n=0, 1, add( expand(x*b(n-j))*binomial(n-1, j-1), j=3..n)) end: T:= n-> (p-> seq(coeff(p, x, i), i=1..degree(p)))(b(n)): seq(T(n), n=3..20); # Alois P. Heinz, Feb 21 2022 # alternative A059022 := proc(n, k) option remember; if n<3 then 0; elif n < 6 and k=1 then 1 ; else k*procname(n-1, k)+binomial(n-1, 2)*procname(n-3, k-1) ; end if; end proc: # R. J. Mathar, Apr 15 2022
-
Mathematica
S3[3, 1] = S3[4, 1] = S3[5, 1] = 1; S3[n_, k_] /; 1 <= k <= Floor[n/3] := S3[n, k] = k*S3[n-1, k] + Binomial[n-1, 2]*S3[n-3, k-1]; S3[, ] = 0; Flatten[ Table[ S3[n, k], {n, 3, 20}, {k, 1, Floor[n/3]}]] (* Jean-François Alcover, Feb 21 2012 *)
Formula
S_r(n+1,k) = k*S_r(n,k) + binomial(n,r-1)*S_r(n-r+1,k-1); for this sequence, r=3.
G.f.: Sum_{n>=0, k>=0} S_r(n,k)*u^k*t^n/n! = exp(u(e^t - Sum_{i=0..r-1} t^i/i!)).
T(n,k) = Sum_{j=0..min(n/2,k)} (-1)^j*B(n,j)*S_2(n-2j,k-j), where B are the Bessel numbers A100861 and S_2 are the 2-associated Stirling numbers of the second kind A008299. - Fabián Pereyra, Feb 20 2022
Comments