cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A008299 Triangle T(n,k) of associated Stirling numbers of second kind, n >= 2, 1 <= k <= floor(n/2).

Original entry on oeis.org

1, 1, 1, 3, 1, 10, 1, 25, 15, 1, 56, 105, 1, 119, 490, 105, 1, 246, 1918, 1260, 1, 501, 6825, 9450, 945, 1, 1012, 22935, 56980, 17325, 1, 2035, 74316, 302995, 190575, 10395, 1, 4082, 235092, 1487200, 1636635, 270270, 1, 8177, 731731, 6914908, 12122110
Offset: 2

Views

Author

Keywords

Comments

T(n,k) is the number of set partitions of [n] into k blocks of size at least 2. Compare with A008277 (blocks of size at least 1) and A059022 (blocks of size at least 3). See also A200091. Reading the table by diagonals gives A134991. The row generating polynomials are the Mahler polynomials s_n(-x). See [Roman, 4.9]. - Peter Bala, Dec 04 2011
Row n gives coefficients of moments of Poisson distribution about the mean expressed as polynomials in lambda [Haight]. The coefficients of the moments about the origin are the Stirling numbers of the second kind, A008277. - N. J. A. Sloane, Jan 24 2020
Rows are of lengths 1,1,2,2,3,3,..., a pattern typical of matrices whose diagonals are rows of another lower triangular matrix--in this instance those of A134991. - Tom Copeland, May 01 2017
For a relation to decomposition of spin correlators see Table 2 of the Delfino and Vito paper. - Tom Copeland, Nov 11 2012

Examples

			There are 3 ways of partitioning a set N of cardinality 4 into 2 blocks each of cardinality at least 2, so T(4,2)=3.
Table begins:
  1;
  1;
  1,    3;
  1,   10;
  1,   25,     15;
  1,   56,    105;
  1,  119,    490,     105;
  1,  246,   1918,    1260;
  1,  501,   6825,    9450,      945;
  1, 1012,  22935,   56980,    17325;
  1, 2035,  74316,  302995,   190575,   10395;
  1, 4082, 235092, 1487200,  1636635,  270270;
  1, 8177, 731731, 6914908, 12122110, 4099095, 135135;
  ...
Reading the table by diagonals produces the triangle A134991.
		

References

  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 222.
  • Frank Avery Haight, "Handbook of the Poisson distribution," John Wiley, 1967. See pages 6,7, but beware of errors. [Haight on page 7 gives five different ways to generate these numbers (see link)].
  • J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 76.
  • S. Roman, The Umbral Calculus, Dover Publications, New York (2005), pp. 129-130.

Crossrefs

Rows: A000247 (k=2), A000478 (k=3), A058844 (k=4).
Row sums: A000296, diagonal: A259877.

Programs

  • Maple
    A008299 := proc(n,k) local i,j,t1; if k<1 or k>floor(n/2) then t1 := 0; else
    t1 := add( (-1)^i*binomial(n, i)*add( (-1)^j*(k - i - j)^(n - i)/(j!*(k - i - j)!), j = 0..k - i), i = 0..k); fi; t1; end; # N. J. A. Sloane, Dec 06 2016
    G:= exp(lambda*(exp(x)-1-x)):
    S:= series(G,x,21):
    seq(seq(coeff(coeff(S,x,n)*n!,lambda,k),k=1..floor(n/2)),n=2..20); # Robert Israel, Jan 15 2020
    T := proc(n, k) option remember; if n < 0 then return 0 fi; if k = 0 then return k^n fi; k*T(n-1, k) + (n-1)*T(n-2, k-1) end:
    seq(seq(T(n,k), k=1..n/2), n=2..9); # Peter Luschny, Feb 11 2021
  • Mathematica
    t[n_, k_] := Sum[ (-1)^i*Binomial[n, i]*Sum[ (-1)^j*(k - i - j)^(n - i)/(j!*(k - i - j)!), {j, 0, k - i}], {i, 0, k}]; Flatten[ Table[ t[n, k], {n, 2, 14}, {k, 1, Floor[n/2]}]] (* Jean-François Alcover, Oct 13 2011, after David Wasserman *)
    Table[Sum[Binomial[n, k - j] StirlingS2[n - k + j, j] (-1)^(j + k), {j, 0, k}], {n, 15}, {k, n/2}] // Flatten (* Eric W. Weisstein, Nov 13 2018 *)
  • PARI
    {T(n, k) = if( n < 1 || 2*k > n, n==0 && k==0, sum(i=0, k, (-1)^i * binomial( n, i) * sum(j=0, k-i, (-1)^j * (k-i-j)^(n-i) / (j! * (k-i-j)!))))}; /* Michael Somos, Oct 19 2014 */
    
  • PARI
    { T(n,k) = sum(i=0,min(n,k), (-1)^i * binomial(n,i) * stirling(n-i,k-i,2) ); } /* Max Alekseyev, Feb 27 2017 */

Formula

T(n,k) = abs(A137375(n,k)).
E.g.f. with additional constant 1: exp(t*(exp(x)-1-x)) = 1 + t*x^2/2! + t*x^3/3! + (t+3*t^2)*x^4/4! + ....
Recurrence relation: T(n+1,k) = k*T(n,k) + n*T(n-1,k-1).
T(n,k) = A134991(n-k,k); A134991(n,k) = T(n+k,k).
More generally, if S_r(n,k) gives the number of set partitions of [n] into k blocks of size at least r then we have the recurrence S_r(n+1,k) = k*S_r(n,k) + binomial(n,r-1)*S_r(n-r+1,k-1) (for this sequence, r=2), with associated e.g.f.: Sum_{n>=0, k>=0} S_r(n,k)*u^k*(t^n/n!) = exp(u*(e^t - Sum_{i=0..r-1} t^i/i!)).
T(n,k) = Sum_{i=0..k} (-1)^i*binomial(n, i)*Sum_{j=0..k-i} (-1)^j*(k-i-j)^(n-i)/(j!*(k-i-j)!). - David Wasserman, Jun 13 2007
G.f.: (R(0)-1)/(x^2*y), where R(k) = 1 - (k+1)*y*x^2/( (k+1)*y*x^2 - (1-k*x)*(1-x-k*x)/R(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Nov 09 2013
T(n,k) = Sum_{i=0..min(n,k)} (-1)^i * binomial(n,i) * Stirling2(n-i,k-i) = Sum_{i=0..min(n,k)} (-1)^i * A007318(n,i) * A008277(n-i,k-i). - Max Alekseyev, Feb 27 2017
T(n, k) = Sum_{j=0..n-k} binomial(j, n-2*k)*E2(n-k, n-k-j) where E2(n, k) are the second-order Eulerian numbers A340556. - Peter Luschny, Feb 11 2021

Extensions

Formula and cross-references from Barbara Haas Margolius (margolius(AT)math.csuohio.edu), Dec 14 2000
Edited by Peter Bala, Dec 04 2011
Edited by N. J. A. Sloane, Jan 24 2020

A006505 Number of partitions of an n-set into boxes of size >2.

Original entry on oeis.org

1, 0, 0, 1, 1, 1, 11, 36, 92, 491, 2557, 11353, 60105, 362506, 2169246, 13580815, 91927435, 650078097, 4762023647, 36508923530, 292117087090, 2424048335917, 20847410586719, 185754044235873, 1711253808769653, 16272637428430152
Offset: 0

Views

Author

Keywords

References

  • J. Riordan, A budget of rhyme scheme counts, pp. 455 - 465 of Second International Conference on Combinatorial Mathematics, New York, April 4-7, 1978. Edited by Allan Gewirtz and Louis V. Quintas. Annals New York Academy of Sciences, 319, 1979.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Column k=2 of A293024.
Cf. A293038.

Programs

  • Maple
    Copy ZL := [ B,{B=Set(Set(Z, card>=3))}, labeled ]: [seq(combstruct[count](ZL, size=n), n=0..25)]; # Zerinvary Lajos, Mar 13 2007
    G:={P=Set(Set(Atom,card>=3))}:combstruct[gfsolve](G,unlabeled,x):seq(combstruct[count]([P,G,labeled],size=i),i=0..25); # Zerinvary Lajos, Dec 16 2007
    g:=proc(n) option remember; if n=0 then RETURN(1); fi; if n<=2 then RETURN(0); fi; if n<=5 then RETURN(x); fi; expand(x*add(binomial(n-1,i)*g(i),i=0..n-3)); end; [seq(subs(x=1,g(n)),n=0..60)]; # N. J. A. Sloane, Jul 20 2011
  • Mathematica
    a[ n_] := If[ n < 0, 0, n! SeriesCoefficient[ Exp[ Exp @ x - 1 - x - x^2 / 2], {x, 0, n}]] (* Michael Somos, Jul 20 2011 *)
    a[0] = 1; a[n_] := n!*Sum[Sum[k!*(-1)^(m-k)*Binomial[m, k]*Sum[StirlingS2[i+k, k]* Binomial[m-k, n-m-i]*2^(-n+m+i)/(i+k)!, {i, 0, n-m}], {k, 0, m}]/m!, {m, 1, n}]; Table[a[n], {n, 0, 25}] (* Jean-François Alcover, Apr 03 2015, after Vladimir Kruchinin *)
    Table[Sum[(-1)^j * Binomial[n, j] * BellB[n-j] * 2^((j-1)/2) * HypergeometricU[(1 - j)/2, 3/2, 1/2], {j, 0, n}], {n, 0, 25}] (* Vaclav Kotesovec, Feb 09 2020 *)
  • PARI
    {a(n) = if( n<0, 0, n! * polcoeff( exp( exp( x + x * O(x^n)) - 1 - x - x^2 / 2), n))} /* Michael Somos, Jul 20 2011 */

Formula

E.g.f.: exp ( exp x - 1 - x - (1/2)*x^2 ).
a(n) = Sum_{k=1..[n/3]} A059022(n,k), n>=3. - R. J. Mathar, Nov 08 2008
a(n) = n! * sum(m=1..n, sum(k=0..m, k!*(-1)^(m-k) *binomial(m,k) *sum(i=0..n-m, stirling2(i+k,k) *binomial(m-k,n-m-i) *2^(-n+m+i)/ (i+k)!))/m!); a(0)=1. - Vladimir Kruchinin, Feb 01 2011
Define polynomials g_n by g_0=1, g_1=g_2=0, g_3=g_4=g_5=x; g(n) = x*Sum_{i=0..n-3} binomial(n-1,i)*g_i; then a(n) = g_n(1). [Riordan]
a(0) = 1; a(n) = Sum_{k=0..n-3} binomial(n-1,k+2) * a(n-k-3). - Seiichi Manyama, Sep 22 2023

Extensions

More terms from Christian G. Bower, Nov 09 2000
Edited by N. J. A. Sloane, Jul 20 2011

A059023 Triangle of Stirling numbers of order 4.

Original entry on oeis.org

1, 1, 1, 1, 1, 35, 1, 126, 1, 336, 1, 792, 1, 1749, 5775, 1, 3718, 45045, 1, 7722, 231231, 1, 15808, 981981, 1, 32071, 3741738, 2627625, 1, 64702, 13307294, 35735700, 1, 130084, 45172842, 300179880, 1, 260984, 148417854, 2002016016, 1, 522937, 476330361
Offset: 4

Views

Author

Barbara Haas Margolius (margolius(AT)math.csuohio.edu), Dec 14 2000

Keywords

Comments

The number of partitions of the set N, |N|=n, into k blocks, all of cardinality greater than or equal to 4. This is the 4-associated Stirling number of the second kind.
This is entered as a triangular array. The entries S_4(n,k) are zero for 4k>n, so these values are omitted. Initial entry in sequence is S_4(4,1).
Rows are of lengths 1,1,1,1,2,2,2,2,3,3,3,3,...

Examples

			There are 35 ways of partitioning a set N of cardinality 8 into 2 blocks each of cardinality at least 4, so S_4(8,2) = 35.
		

References

  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 222.
  • J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 76.

Crossrefs

Row sums give A057837.

Programs

  • Maple
    b:= proc(n) option remember; `if`(n=0, 1, add(
          expand(x*b(n-j))*binomial(n-1, j-1), j=4..n))
        end:
    T:= n-> (p-> seq(coeff(p, x, i), i=1..degree(p)))(b(n)):
    seq(T(n), n=4..20);  # Alois P. Heinz, Feb 21 2022
    # alternative
    A059023 := proc(n, k)
        option remember;
        if n<4 then
            0;
        elif n < 8 and k=1 then
            1 ;
        else
            k*procname(n-1, k)+binomial(n-1, 3)*procname(n-4, k-1) ;
        end if;
    end proc:  # R. J. Mathar, Apr 15 2022
  • Mathematica
    s4[n_, k_] := k*s4[n-1, k] + Binomial[n-1, 3]*s4[n-4, k-1]; s4[n_, k_] /; 4 k > n = 0; s4[, k /; k <= 0] = 0; s4[0, 0] = 1;
    Flatten[Table[s4[n, k], {n, 4, 20}, {k, 1, Floor[n/4]}]][[1 ;; 42]] (* Jean-François Alcover, Jun 16 2011 *)

Formula

S_r(n+1, k) = k*S_r(n, k) + binomial(n, r-1)*S_r(n-r+1, k-1); for this sequence, r=4.
G.f.: Sum_{n>=0, k>=0} S_r(n,k)*u^k*t^n/n! = exp(u(e^t-sum(t^i/i!, i=0..r-1))).
T(n,k) = Sum_{j=0..min(n/3,k)} (-1)^j*n!/(6^j*j!*(n-3j)!)*S_3(n-3j,k-j), where S_3 are the 3-associated Stirling numbers of the second kind A059022. - Fabián Pereyra, Feb 21 2022

A059024 Triangle of Stirling numbers of order 5.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 126, 1, 462, 1, 1254, 1, 3003, 1, 6721, 1, 14443, 126126, 1, 30251, 1009008, 1, 62322, 5309304, 1, 127024, 23075052, 1, 257108, 89791416, 1, 518092, 325355316, 488864376, 1, 1041029, 1122632043, 6844101264, 1, 2088043
Offset: 5

Views

Author

Barbara Haas Margolius (margolius(AT)math.csuohio.edu), Dec 14 2000

Keywords

Comments

The number of partitions of the set N, |N|=n, into k blocks, all of cardinality greater than or equal to 5. This is the 5-associated Stirling number of the second kind.
This is entered as a triangular array. The entries S_5(n,k) are zero for 5k>n, so these values are omitted. Initial entry in sequence is S_5(5,1).
Rows are of lengths 1,1,1,1,1,2,2,2,2,2,3,3,3,3,3,...

Examples

			There are 126 ways of partitioning a set N of cardinality 10 into 2 blocks each of cardinality at least 5, so S_5(10,2) = 126.
Triangle begins:
1;
1;
1;
1;
1;
1,    126;
1,    462;
1,   1254;
1,   3003;
1,   6721;
1,  14443,    126126;
1,  30251,   1009008;
1,  62322,   5309304;
1, 127024,  23075052;
1, 257108,  89791416;
1, 518092, 325355316, 488864376;
...
		

References

  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 222.
  • J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 76.

Crossrefs

Row sums give A057814.

Programs

  • Maple
    T:= proc(n,k) option remember; `if`(k<1 or k>n/5, 0,
          `if`(k=1, 1, k*T(n-1, k)+binomial(n-1, 4)*T(n-5, k-1)))
        end:
    seq(seq(T(n, k), k=1..n/5), n=5..25);  # Alois P. Heinz, Aug 18 2017
  • Mathematica
    S5[n_ /; 5 <= n <= 9, 1] = 1; S5[n_, k_] /; 1 <= k <= Floor[n/5] := S5[n, k] = k*S5[n-1, k] + Binomial[n-1, 4]*S5[n-5, k-1]; S5[, ] = 0; Flatten[ Table[ S5[n, k], {n, 5, 25}, {k, 1, Floor[n/5]}]] (* Jean-François Alcover, Feb 21 2012 *)

Formula

S_r(n+1, k) = k*S_r(n, k) + binomial(n, r-1)*S_r(n-r+1, k-1); for this sequence, r=5.
G.f.: Sum_{n>=0, k>=0} S_r(n,k)*u^k*t^n/n! = exp(u(e^t-sum(t^i/i!, i=0..r-1))).
T(n,k) = Sum_{j=0..min(n/4,k)} (-1)^j*n!/(24^j*j!*(n-4j)!)*S_4(n-4j,k-j), where S_4 are the 4-associated Stirling numbers of the second kind A059023. - Fabián Pereyra, Feb 21 2022

A272352 a(n) is the number of ways of putting n labeled balls into 2 indistinguishable boxes such that each box contains at least 3 balls.

Original entry on oeis.org

10, 35, 91, 210, 456, 957, 1969, 4004, 8086, 16263, 32631, 65382, 130900, 261953, 524077, 1048344, 2096898, 4194027, 8388307, 16776890, 33554080, 67108485, 134217321, 268435020, 536870446, 1073741327, 2147483119, 4294966734, 8589933996, 17179868553
Offset: 6

Views

Author

Vincenzo Librandi, May 11 2016

Keywords

Examples

			For n=6, label the balls A, B, C, D, E, and F. Then each box must contain exactly 3 balls, and the 10 ways are ABC/DEF, ABD/CEF, ABE/CDF, ABF/CDE, ACD/BEF, ACE/BDF, ACF/BDE, ADE/BCF, ADF/BCE, AEF/BCD. - _Michael B. Porter_, Jul 01 2016
		

Crossrefs

Cf. A000478, A058844, A261724, A272982, column 2 of A059022.
Column k=3 of A201385 (shifted).

Programs

  • Magma
    [(2^n-2-2*n-2*Binomial(n,2))/2: n in [6..50]];
  • Mathematica
    Table[1/2 (2^n - 2 - 2 n - 2 Binomial[n, 2]), {n, 6, 40}]
    LinearRecurrence[{5,-9,7,-2},{10,35,91,210},30] (* Harvey P. Dale, Mar 29 2018 *)

Formula

G.f.: x^6*(10 - 15*x + 6*x^2)/((1 - x)^3*(1 - 2*x)).
a(n) = (2^n - 2 - 2*n - 2*binomial(n, 2))/2.
a(n) = 5*a(n-1) - 9*a(n-2) + 7*a(n-3) - 2*a(n-4), for n > 3.
E.g.f.: (2 - 2*exp(x) + 2*x + x^2)^2/8. - Stefano Spezia, Jul 25 2021

A059025 Triangle of Stirling numbers of order 6.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 462, 1, 1716, 1, 4719, 1, 11440, 1, 25883, 1, 56134, 1, 118456, 2858856, 1, 245480, 23279256, 1, 502588, 124710300, 1, 1020680, 551496660, 1, 2061709, 2181183147, 1, 4149752, 8021782197, 1, 8333153, 28051272535
Offset: 6

Views

Author

Barbara Haas Margolius (margolius(AT)math.csuohio.edu), Dec 14 2000

Keywords

Comments

The number of partitions of the set N, |N|=n, into k blocks, all of cardinality greater than or equal to 6. This is the 6-associated Stirling number of the second kind.
This is entered as a triangular array. The entries S_6(n,k) are zero for 6k>n, so these values are omitted. Initial entry in sequence is S_6(6,1).
Rows are of lengths 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, ...

Examples

			There are 462 ways of partitioning a set N of cardinality 12 into 2 blocks each of cardinality at least 6, so S_6(12,2)=462.
		

References

  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 222.
  • J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 76.

Crossrefs

Programs

  • Mathematica
    S6[n_ /; 6 <= n <= 11, 1] = 1; S6[n_, k_] /; 1 <= k <= Floor[n/6] := S6[n, k] = k*S6[n-1, k] + Binomial[n-1, 5]*S6[n-6, k-1]; S6[, ] = 0; Flatten[ Table[ S6[n, k], {n, 6, 24}, {k, 1, Floor[n/6]}]] (* Jean-François Alcover, Feb 21 2012 *)

Formula

S_r(n+1, k)=k S_r(n, k)+binomial(n, r-1)S_r(n-r+1, k-1) for this sequence, r=6.
G.f.: Sum_{n>=0, k>=0} S_r(n,k)*u^k*t^n/n! = exp(u(e^t - Sum_{i=0..r-1} t^i/i!)).

A261724 a(n) is the number of ways of putting n labeled balls into 4 indistinguishable boxes such that each box contains at least 3 balls.

Original entry on oeis.org

15400, 200200, 1611610, 10335325, 57962905, 297797500, 1439774336, 6662393738, 29844199346, 130445781284, 559533979466, 2365296391535, 9885290914059, 40944327590760, 168389163468240, 688631376550260, 2803570746766140, 11373212443859760, 46006062639998890
Offset: 12

Views

Author

Vincenzo Librandi, May 17 2016

Keywords

Comments

Linear recurrence signature is given by the terms of A255002 after -1. - Bruno Berselli, May 20 2016

Crossrefs

Cf. A000478, A058844, A272352, A272982, column 4 of A059022.

Programs

  • Magma
    [(1/12)*(-3^(n-2)*(n^2+5*n+18)+(1/64)*(2^(2*n+5)+3*2^n*(n^4+2*n^3+19*n^2+42*n+64)-16*(n^6-9*n^5+43*n^4-91*n^3+112*n^2-32*n+8))): n in [12..40]];
    
  • Mathematica
    Table[(1/12) (-(3^(n - 2) (n^2 + 5 n + 18)) + (1/64) (2^(2 n + 5) + 3 2^n (n^4 + 2 n^3 + 19 n^2 + 42 n + 64) - 16 (n^6 - 9 n^5 + 43 n^4 - 91 n^3 + 112 n^2 - 32 n + 8))), {n, 12, 40}]
  • PARI
    Vec(x^12*(15400 -261800*x +1996610*x^2 -9045575*x^3 +27162905*x^4 -57079715*x^5 +86268721*x^6 -94696602*x^7 +75062256*x^8 -41952000*x^9 +15705360*x^10 -3538080*x^11 +362880*x^12) / ((1 -x)^7*(1 -2*x)^5*(1 -3*x)^3*(1 -4*x)) + O(x^30)) \\ Colin Barker, May 24 2016

Formula

a(n) = (1/12)*(-3^(n - 2)*(n^2 + 5*n + 18) + (1/64)*(2^(2*n + 5) + 3*2^n*(n^4 + 2*n^3 + 19*n^2 + 42*n + 64) - 16*(n^6 - 9*n^5 + 43*n^4 - 91*n^3 + 112*n^2 - 32*n + 8))).
G.f.: x^12*(15400 -261800*x +1996610*x^2 -9045575*x^3 +27162905*x^4 -57079715*x^5 +86268721*x^6 -94696602*x^7 +75062256*x^8 -41952000*x^9 +15705360*x^10 -3538080*x^11 +362880*x^12) / ((1 -x)^7*(1 -2*x)^5*(1 -3*x)^3*(1 -4*x)). - Colin Barker, May 24 2016

Extensions

Definition, data and formula corrected by Istvan Mezo and Bruno Berselli, May 20 2016

A272982 a(n) is the number of ways of putting n labeled balls into 3 indistinguishable boxes such that each box contains at least 3 balls.

Original entry on oeis.org

280, 2100, 10395, 42735, 158301, 549549, 1827826, 5903898, 18682014, 58257810, 179765973, 550478241, 1676305723, 5083927299, 15372843684, 46383762084, 139730030100, 420448298400, 1264071094975, 3798101973315, 11406989362185, 34248214131465, 102803026929030, 308533903071390
Offset: 9

Views

Author

Vincenzo Librandi, May 12 2016

Keywords

Examples

			For n=9, label the balls A through I. The box containing ball A can contain 8*7/2 = 28 combinations of other balls. There are 6 balls for the other two boxes, so there are A272352(6) = 10 combinations for those two boxes. Thus, a(9) = 28*10 = 280. - _Michael B. Porter_, Jul 01 2016
		

Crossrefs

Cf. A000478, A058844, A261724, A272352, column 3 of A059022.

Programs

  • Magma
    [(1/3)*(1/16)*(6*n^4-12*n^3-3*2^n*n^2+42*n^2-9*2^n*n+12*n+8*3^n-3*2^(n+3)+24): n in [9..40]];
    
  • Mathematica
    Table[(1/3) (1/16) (6 n^4 - 12 n^3 - 3 2^n n^2 + 42 n^2 - 9 2^n n + 12 n + 8 3^n - 3 2^(n + 3) + 24), {n, 9, 40}]
    CoefficientList[Series[(280 - 1820*x + 4795*x^2 - 6615*x^3 + 5106*x^4 - 2100*x^5 + 360*x^6)/((1 - 3*x)*(1 - 2*x)^3*(1 - x)^5), {x, 0, 40}], x] (* Stefano Spezia, Oct 04 2018 *)
  • PARI
    Vec(x^9*(280 - 1820*x + 4795*x^2 - 6615*x^3 + 5106*x^4 - 2100*x^5 + 360*x^6)/((1 - 3*x)*(1 - 2*x)^3*(1 - x)^5) + O(x^40)) \\ Stefano Spezia, Oct 04 2018

Formula

G.f.: x^9*(280 - 1820*x + 4795*x^2 - 6615*x^3 + 5106*x^4 - 2100*x^5 + 360*x^6)/((1 - 3*x)*(1 - 2*x)^3*(1 - x)^5).
a(n) = (1/3)*(1/16)*(6*n^4 - 12*n^3 - 3*2^n*n^2 + 42*n^2 - 9*2^n*n + 12*n + 8*3^n - 3*2^(n+3) + 24).
a(n) = 3*a(n-1) + C(n-1,2)*(2^(n-4) + 2 - n - C(n-3, 2)), a(n)=0, n < 9. - Vladimir Kruchinin, Oct 04 2018

Extensions

Data, formulas and programs corrected for erroneous formula in Mezo's paper by Bruno Berselli, May 21 2016

A200092 The number of ways of putting n labeled items into k labeled boxes so that each box receives at least 3 objects.

Original entry on oeis.org

1, 1, 1, 1, 20, 1, 70, 1, 182, 1, 420, 1680, 1, 912, 12600, 1, 1914, 62370, 1, 3938, 256410, 369600, 1, 8008, 949806, 4804800, 1, 16172, 3297294, 38678640, 1, 32526, 10966956, 248047800, 168168000
Offset: 3

Views

Author

Peter Bala, Dec 04 2011

Keywords

Comments

Equivalently, the number of ordered set partitions of the set [n] into k blocks of size at least three. When the boxes are unlabeled we obtain A059022.

Examples

			Table begins
  n\k |  1     2       3
  ----+-----------------
   3  |  1
   4  |  1
   5  |  1
   6  |  1    20
   7  |  1    70
   8  |  1   182
   9  |  1   420    1680
  10  |  1   912   12600
  11  |  1  1914   62370
  ...
T(6,2) = 20: The arrangements of 6 objects into 2 boxes { } and [ ] so that each box contains at least 3 items are {1,2,3}[4,5,6], {1,2,4}[3,5,6], {1,2,5}[3,4,6], {1,2,6}[3,4,5], {1,3,4}[2,5,6], {1,3,5}[2,4,6], {1,3,6}[2,4,5], {1,4,5}[2,3,6], {1,4,6}[2,3,5], {1,5,6}[2,3,4] and the 10 other possibilities where the contents of a pair of boxes are swapped.
		

Crossrefs

Formula

E.g.f. with additional constant 1: 1/(1 - t*(exp(x) - 1 - x - x^2/2!)) = 1 + t*x^3/3! + t*x^4/4! + t*x^5/5! + (t+20*t^2)*x^6/6! + ....
Recurrence relation: T(n+1,k) = k*(T(n,k) + n*(n-1)/2*T(n-2,k-1)). T(n,k) = k!*A059022(n,k).

A352611 a(n) is the number of different ways to partition the set of vertices of a convex n-gon into 5 polygons.

Original entry on oeis.org

1401400, 28028000, 333533200, 3073270200, 24234675465, 172096749825, 1134040872965, 7069307049805, 42240545297951, 244205509154607, 1375458924105651, 7586883537988755, 41147137237012950, 220107145169421510, 1164186829638102270, 6100518487069916910
Offset: 15

Views

Author

Janaka Rodrigo, Mar 23 2022

Keywords

Examples

			For n=17, the set of vertices of a convex 17-gon can be partitioned into 5 polygons in 333533200 different ways:
- as 4 triangles and one pentagon ((1/4!)*C(17,3)*C(14,3)*C(11,3)*C(8,3)*C(5,5) = 95295200 different ways) or
- as 3 triangles and 2 quadrilaterals ((1/3!)*(1/2!)*C(17,3)*C(14,3)*C(11,3)*C(8,4)*C(4,4) = 238238000 different ways).
		

Crossrefs

Column 5 of A059022.

Programs

  • Maple
    A059022 := proc(n,k)
        option remember;
        if n<3 then
            0;
        elif n < 6 and k=1 then
            1 ;
        else
            k*procname(n-1,k)+binomial(n-1,2)*procname(n-3,k-1) ;
        end if;
    end proc:
    A352611 := proc(n)
        A059022(n,5) ;
    end proc:
    seq(A352611(n),n=15..50) ; # R. J. Mathar, Apr 08 2022
  • Mathematica
    S3[3, 1] = S3[4, 1] = S3[5, 1] = 1;
    S3[n_, k_] /; 1 <= k <= Floor[n/3] := S3[n, k] = k*S3[n-1, k] + Binomial[n-1, 2]*S3[n-3, k-1];
    S3[, ] = 0;
    a[n_] := S3[n, 5];
    Table[a[n], {n, 15, 50}] (* Jean-François Alcover, Jul 06 2022 *)

Formula

Let S(n,k) be the number of different ways to partition the set of vertices of a convex n-gon into k polygons, where each partition contains at least 3 objects (vertices).
By the k-associated Stirling numbers of second kind, it can be deduced that S(n,k) = k*S(n-1,k) + C(n-1,2)*S(n-3,k-1).
When k = 5 this gives the required formula for this particular case,
a(n) = S(n,5) = 5*S(n-1,5) + C(n-1,2)*S(n-3,4)
where n > 14 and S(14,5) = 0.
Showing 1-10 of 11 results. Next