A008299
Triangle T(n,k) of associated Stirling numbers of second kind, n >= 2, 1 <= k <= floor(n/2).
Original entry on oeis.org
1, 1, 1, 3, 1, 10, 1, 25, 15, 1, 56, 105, 1, 119, 490, 105, 1, 246, 1918, 1260, 1, 501, 6825, 9450, 945, 1, 1012, 22935, 56980, 17325, 1, 2035, 74316, 302995, 190575, 10395, 1, 4082, 235092, 1487200, 1636635, 270270, 1, 8177, 731731, 6914908, 12122110
Offset: 2
There are 3 ways of partitioning a set N of cardinality 4 into 2 blocks each of cardinality at least 2, so T(4,2)=3.
Table begins:
1;
1;
1, 3;
1, 10;
1, 25, 15;
1, 56, 105;
1, 119, 490, 105;
1, 246, 1918, 1260;
1, 501, 6825, 9450, 945;
1, 1012, 22935, 56980, 17325;
1, 2035, 74316, 302995, 190575, 10395;
1, 4082, 235092, 1487200, 1636635, 270270;
1, 8177, 731731, 6914908, 12122110, 4099095, 135135;
...
Reading the table by diagonals produces the triangle A134991.
- L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 222.
- Frank Avery Haight, "Handbook of the Poisson distribution," John Wiley, 1967. See pages 6,7, but beware of errors. [Haight on page 7 gives five different ways to generate these numbers (see link)].
- J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 76.
- S. Roman, The Umbral Calculus, Dover Publications, New York (2005), pp. 129-130.
- Vincenzo Librandi and Alois P. Heinz, Rows n = 2..200, flattened (rows n = 2..104 from Vincenzo Librandi)
- Joerg Arndt and N. J. A. Sloane, Counting Words that are in "Standard Order"
- Peter Bala, Diagonals of triangles with generating function exp(t*F(x)).
- J. Fernando Barbero G., Jesús Salas, and Eduardo J. S. Villaseñor, Bivariate Generating Functions for a Class of Linear Recurrences. I. General Structure, arXiv:1307.2010 [math.CO], 2013.
- J. Fernando Barbero G., Jesús Salas, and Eduardo J. S. Villaseñor, Generalized Stirling permutations and forests: Higher-order Eulerian and Ward numbers, Electronic Journal of Combinatorics 22(3) (2015), #P3.37.
- Fufa Beyene, Jörgen Backelin, Roberto Mantaci, and Samuel A. Fufa, Set Partitions and Other Bell Number Enumerated Objects, J. Int. Seq., Vol. 26 (2023), Article 23.1.8.
- Gilles Bonnet and Anna Gusakova, Concentration inequalities for Poisson U-statistics, arXiv:2404.16756 [math.PR], 2024. See p. 17.
- E. Rodney Canfield, J. William Helton, and Jared A. Hughes, Uniform Convergence of an Asymptotic Approximation to Associated Stirling Numbers, arXiv:2409.01489 [math.CO], 2024. See p. 12.
- Tom Copeland, Generators, Inversion, and Matrix, Binomial, and Integral Transforms
- Tom Copeland, Short note on Lagrange inversion
- Robert Coquereaux and Jean-Bernard Zuber, Counting partitions by genus. II. A compendium of results, arXiv:2305.01100 [math.CO], 2023. See p. 3.
- Daniel W. Cranston and Chun-Hung Liu, Proper Conflict-free Coloring of Graphs with Large Maximum Degree, arXiv:2211.02818 [math.CO], 2022.
- Gesualdo Delfino and Jacopo Viti, Potts q-color field theory and scaling random cluster model, arXiv:1104.4323 [hep-th], 2011.
- Ming-Jian Ding and Jiang Zeng, Proof of an explicit formula for a series from Ramanujan's Notebooks via tree functions, arXiv:2307.00566 [math.CO], 2023.
- A. E. Fekete, Apropos two notes on notation, Amer. Math. Monthly, 101 (1994), 771-778.
- F. A. Haight, Handbook of the Poisson distribution, John Wiley, 1967 [Annotated scan of page 7 only. Note that there is an error in the table.]
- Mathematics Stack Exchange, Mahler polynomials and the zeros of the incomplete gamma function, a Mathematics Stack Exchange question by Tom Copeland, Jan 06 2016.
- R. Paris, A uniform asymptotic expansion for the incomplete gamma function, Journal of Computational and Applied Mathematics, 148 (2002), p. 223-239 (See 332. From Tom Copeland, Jan 03 2016).
- Andrew Elvey Price and Alan D. Sokal, Phylogenetic trees, augmented perfect matchings, and a Thron-type continued fraction (T-fraction) for the Ward polynomials, arXiv:2001.01468 [math.CO], 2020.
- E. G. Santos, Counting non-attacking chess pieces placements: Bishops and Anassas, arXiv:2411.16492 [math.CO], 2024. See p. 2.
- L. M. Smiley, Completion of a Rational Function Sequence of Carlitz, arXiv:math/0006106 [math.CO], 2000.
- M. Z. Spivey, On Solutions to a General Combinatorial Recurrence, J. Int. Seq. 14 (2011) # 11.9.7.
- Erik Vigren and Andreas Dieckmann, A New Result in Form of Finite Triple Sums for a Series from Ramanujan’s Notebooks, Symmetry (2022) Vol. 14, No. 6, 1090.
- Eric Weisstein's World of Mathematics, Mahler polynomial
- Wikipedia, Mahler polynomials
-
A008299 := proc(n,k) local i,j,t1; if k<1 or k>floor(n/2) then t1 := 0; else
t1 := add( (-1)^i*binomial(n, i)*add( (-1)^j*(k - i - j)^(n - i)/(j!*(k - i - j)!), j = 0..k - i), i = 0..k); fi; t1; end; # N. J. A. Sloane, Dec 06 2016
G:= exp(lambda*(exp(x)-1-x)):
S:= series(G,x,21):
seq(seq(coeff(coeff(S,x,n)*n!,lambda,k),k=1..floor(n/2)),n=2..20); # Robert Israel, Jan 15 2020
T := proc(n, k) option remember; if n < 0 then return 0 fi; if k = 0 then return k^n fi; k*T(n-1, k) + (n-1)*T(n-2, k-1) end:
seq(seq(T(n,k), k=1..n/2), n=2..9); # Peter Luschny, Feb 11 2021
-
t[n_, k_] := Sum[ (-1)^i*Binomial[n, i]*Sum[ (-1)^j*(k - i - j)^(n - i)/(j!*(k - i - j)!), {j, 0, k - i}], {i, 0, k}]; Flatten[ Table[ t[n, k], {n, 2, 14}, {k, 1, Floor[n/2]}]] (* Jean-François Alcover, Oct 13 2011, after David Wasserman *)
Table[Sum[Binomial[n, k - j] StirlingS2[n - k + j, j] (-1)^(j + k), {j, 0, k}], {n, 15}, {k, n/2}] // Flatten (* Eric W. Weisstein, Nov 13 2018 *)
-
{T(n, k) = if( n < 1 || 2*k > n, n==0 && k==0, sum(i=0, k, (-1)^i * binomial( n, i) * sum(j=0, k-i, (-1)^j * (k-i-j)^(n-i) / (j! * (k-i-j)!))))}; /* Michael Somos, Oct 19 2014 */
-
{ T(n,k) = sum(i=0,min(n,k), (-1)^i * binomial(n,i) * stirling(n-i,k-i,2) ); } /* Max Alekseyev, Feb 27 2017 */
Formula and cross-references from Barbara Haas Margolius (margolius(AT)math.csuohio.edu), Dec 14 2000
A006505
Number of partitions of an n-set into boxes of size >2.
Original entry on oeis.org
1, 0, 0, 1, 1, 1, 11, 36, 92, 491, 2557, 11353, 60105, 362506, 2169246, 13580815, 91927435, 650078097, 4762023647, 36508923530, 292117087090, 2424048335917, 20847410586719, 185754044235873, 1711253808769653, 16272637428430152
Offset: 0
- J. Riordan, A budget of rhyme scheme counts, pp. 455 - 465 of Second International Conference on Combinatorial Mathematics, New York, April 4-7, 1978. Edited by Allan Gewirtz and Louis V. Quintas. Annals New York Academy of Sciences, 319, 1979.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Seiichi Manyama, Table of n, a(n) for n = 0..579 (terms 0..250 from Alois P. Heinz)
- E. A. Enneking and J. C. Ahuja, Generalized Bell numbers, Fib. Quart., 14 (1976), 67-73.
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 102
- Vladimir Victorovich Kruchinin, Composition of ordinary generating functions, arXiv:1009.2565 [math.CO], 2010.
- I. Mezo, Periodicity of the last digits of some combinatorial sequences, arXiv preprint arXiv:1308.1637 [math.CO], 2013.
- J. Riordan, Cached copy of paper [With permission]
-
Copy ZL := [ B,{B=Set(Set(Z, card>=3))}, labeled ]: [seq(combstruct[count](ZL, size=n), n=0..25)]; # Zerinvary Lajos, Mar 13 2007
G:={P=Set(Set(Atom,card>=3))}:combstruct[gfsolve](G,unlabeled,x):seq(combstruct[count]([P,G,labeled],size=i),i=0..25); # Zerinvary Lajos, Dec 16 2007
g:=proc(n) option remember; if n=0 then RETURN(1); fi; if n<=2 then RETURN(0); fi; if n<=5 then RETURN(x); fi; expand(x*add(binomial(n-1,i)*g(i),i=0..n-3)); end; [seq(subs(x=1,g(n)),n=0..60)]; # N. J. A. Sloane, Jul 20 2011
-
a[ n_] := If[ n < 0, 0, n! SeriesCoefficient[ Exp[ Exp @ x - 1 - x - x^2 / 2], {x, 0, n}]] (* Michael Somos, Jul 20 2011 *)
a[0] = 1; a[n_] := n!*Sum[Sum[k!*(-1)^(m-k)*Binomial[m, k]*Sum[StirlingS2[i+k, k]* Binomial[m-k, n-m-i]*2^(-n+m+i)/(i+k)!, {i, 0, n-m}], {k, 0, m}]/m!, {m, 1, n}]; Table[a[n], {n, 0, 25}] (* Jean-François Alcover, Apr 03 2015, after Vladimir Kruchinin *)
Table[Sum[(-1)^j * Binomial[n, j] * BellB[n-j] * 2^((j-1)/2) * HypergeometricU[(1 - j)/2, 3/2, 1/2], {j, 0, n}], {n, 0, 25}] (* Vaclav Kotesovec, Feb 09 2020 *)
-
{a(n) = if( n<0, 0, n! * polcoeff( exp( exp( x + x * O(x^n)) - 1 - x - x^2 / 2), n))} /* Michael Somos, Jul 20 2011 */
A059023
Triangle of Stirling numbers of order 4.
Original entry on oeis.org
1, 1, 1, 1, 1, 35, 1, 126, 1, 336, 1, 792, 1, 1749, 5775, 1, 3718, 45045, 1, 7722, 231231, 1, 15808, 981981, 1, 32071, 3741738, 2627625, 1, 64702, 13307294, 35735700, 1, 130084, 45172842, 300179880, 1, 260984, 148417854, 2002016016, 1, 522937, 476330361
Offset: 4
Barbara Haas Margolius (margolius(AT)math.csuohio.edu), Dec 14 2000
There are 35 ways of partitioning a set N of cardinality 8 into 2 blocks each of cardinality at least 4, so S_4(8,2) = 35.
- L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 222.
- J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 76.
-
b:= proc(n) option remember; `if`(n=0, 1, add(
expand(x*b(n-j))*binomial(n-1, j-1), j=4..n))
end:
T:= n-> (p-> seq(coeff(p, x, i), i=1..degree(p)))(b(n)):
seq(T(n), n=4..20); # Alois P. Heinz, Feb 21 2022
# alternative
A059023 := proc(n, k)
option remember;
if n<4 then
0;
elif n < 8 and k=1 then
1 ;
else
k*procname(n-1, k)+binomial(n-1, 3)*procname(n-4, k-1) ;
end if;
end proc: # R. J. Mathar, Apr 15 2022
-
s4[n_, k_] := k*s4[n-1, k] + Binomial[n-1, 3]*s4[n-4, k-1]; s4[n_, k_] /; 4 k > n = 0; s4[, k /; k <= 0] = 0; s4[0, 0] = 1;
Flatten[Table[s4[n, k], {n, 4, 20}, {k, 1, Floor[n/4]}]][[1 ;; 42]] (* Jean-François Alcover, Jun 16 2011 *)
A059024
Triangle of Stirling numbers of order 5.
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 126, 1, 462, 1, 1254, 1, 3003, 1, 6721, 1, 14443, 126126, 1, 30251, 1009008, 1, 62322, 5309304, 1, 127024, 23075052, 1, 257108, 89791416, 1, 518092, 325355316, 488864376, 1, 1041029, 1122632043, 6844101264, 1, 2088043
Offset: 5
Barbara Haas Margolius (margolius(AT)math.csuohio.edu), Dec 14 2000
There are 126 ways of partitioning a set N of cardinality 10 into 2 blocks each of cardinality at least 5, so S_5(10,2) = 126.
Triangle begins:
1;
1;
1;
1;
1;
1, 126;
1, 462;
1, 1254;
1, 3003;
1, 6721;
1, 14443, 126126;
1, 30251, 1009008;
1, 62322, 5309304;
1, 127024, 23075052;
1, 257108, 89791416;
1, 518092, 325355316, 488864376;
...
- L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 222.
- J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 76.
-
T:= proc(n,k) option remember; `if`(k<1 or k>n/5, 0,
`if`(k=1, 1, k*T(n-1, k)+binomial(n-1, 4)*T(n-5, k-1)))
end:
seq(seq(T(n, k), k=1..n/5), n=5..25); # Alois P. Heinz, Aug 18 2017
-
S5[n_ /; 5 <= n <= 9, 1] = 1; S5[n_, k_] /; 1 <= k <= Floor[n/5] := S5[n, k] = k*S5[n-1, k] + Binomial[n-1, 4]*S5[n-5, k-1]; S5[, ] = 0; Flatten[ Table[ S5[n, k], {n, 5, 25}, {k, 1, Floor[n/5]}]] (* Jean-François Alcover, Feb 21 2012 *)
A272352
a(n) is the number of ways of putting n labeled balls into 2 indistinguishable boxes such that each box contains at least 3 balls.
Original entry on oeis.org
10, 35, 91, 210, 456, 957, 1969, 4004, 8086, 16263, 32631, 65382, 130900, 261953, 524077, 1048344, 2096898, 4194027, 8388307, 16776890, 33554080, 67108485, 134217321, 268435020, 536870446, 1073741327, 2147483119, 4294966734, 8589933996, 17179868553
Offset: 6
For n=6, label the balls A, B, C, D, E, and F. Then each box must contain exactly 3 balls, and the 10 ways are ABC/DEF, ABD/CEF, ABE/CDF, ABF/CDE, ACD/BEF, ACE/BDF, ACF/BDE, ADE/BCF, ADF/BCE, AEF/BCD. - _Michael B. Porter_, Jul 01 2016
-
[(2^n-2-2*n-2*Binomial(n,2))/2: n in [6..50]];
-
Table[1/2 (2^n - 2 - 2 n - 2 Binomial[n, 2]), {n, 6, 40}]
LinearRecurrence[{5,-9,7,-2},{10,35,91,210},30] (* Harvey P. Dale, Mar 29 2018 *)
A059025
Triangle of Stirling numbers of order 6.
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, 462, 1, 1716, 1, 4719, 1, 11440, 1, 25883, 1, 56134, 1, 118456, 2858856, 1, 245480, 23279256, 1, 502588, 124710300, 1, 1020680, 551496660, 1, 2061709, 2181183147, 1, 4149752, 8021782197, 1, 8333153, 28051272535
Offset: 6
Barbara Haas Margolius (margolius(AT)math.csuohio.edu), Dec 14 2000
There are 462 ways of partitioning a set N of cardinality 12 into 2 blocks each of cardinality at least 6, so S_6(12,2)=462.
- L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 222.
- J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 76.
- Michael De Vlieger, Table of n, a(n) for n = 6..13205 (rows n = 6..400, flattened).
- Bishal Deb and Alan D. Sokal, Higher-order Stirling cycle and subset triangles: Total positivity, continued fractions and real-rootedness, arXiv:2507.18959 [math.CO], 2025. See p. 5.
- A. E. Fekete, Apropos two notes on notation, Amer. Math. Monthly, 101 (1994), 771-778.
-
S6[n_ /; 6 <= n <= 11, 1] = 1; S6[n_, k_] /; 1 <= k <= Floor[n/6] := S6[n, k] = k*S6[n-1, k] + Binomial[n-1, 5]*S6[n-6, k-1]; S6[, ] = 0; Flatten[ Table[ S6[n, k], {n, 6, 24}, {k, 1, Floor[n/6]}]] (* Jean-François Alcover, Feb 21 2012 *)
A261724
a(n) is the number of ways of putting n labeled balls into 4 indistinguishable boxes such that each box contains at least 3 balls.
Original entry on oeis.org
15400, 200200, 1611610, 10335325, 57962905, 297797500, 1439774336, 6662393738, 29844199346, 130445781284, 559533979466, 2365296391535, 9885290914059, 40944327590760, 168389163468240, 688631376550260, 2803570746766140, 11373212443859760, 46006062639998890
Offset: 12
- Colin Barker, Table of n, a(n) for n = 12..1000
- I. Mezo, Periodicity of the last digits of some combinatorial sequences, arXiv preprint arXiv:1308.1637 [math.CO], 2013 (third formula on page 16 is incorrect).
- Index entries for linear recurrences with constant coefficients, signature (30, -415, 3514, -20386, 85924, -272198, 661180, -1244717, 1822478, -2068955, 1802474, -1181760, 563888, -184752, 37152, -3456).
-
[(1/12)*(-3^(n-2)*(n^2+5*n+18)+(1/64)*(2^(2*n+5)+3*2^n*(n^4+2*n^3+19*n^2+42*n+64)-16*(n^6-9*n^5+43*n^4-91*n^3+112*n^2-32*n+8))): n in [12..40]];
-
Table[(1/12) (-(3^(n - 2) (n^2 + 5 n + 18)) + (1/64) (2^(2 n + 5) + 3 2^n (n^4 + 2 n^3 + 19 n^2 + 42 n + 64) - 16 (n^6 - 9 n^5 + 43 n^4 - 91 n^3 + 112 n^2 - 32 n + 8))), {n, 12, 40}]
-
Vec(x^12*(15400 -261800*x +1996610*x^2 -9045575*x^3 +27162905*x^4 -57079715*x^5 +86268721*x^6 -94696602*x^7 +75062256*x^8 -41952000*x^9 +15705360*x^10 -3538080*x^11 +362880*x^12) / ((1 -x)^7*(1 -2*x)^5*(1 -3*x)^3*(1 -4*x)) + O(x^30)) \\ Colin Barker, May 24 2016
A272982
a(n) is the number of ways of putting n labeled balls into 3 indistinguishable boxes such that each box contains at least 3 balls.
Original entry on oeis.org
280, 2100, 10395, 42735, 158301, 549549, 1827826, 5903898, 18682014, 58257810, 179765973, 550478241, 1676305723, 5083927299, 15372843684, 46383762084, 139730030100, 420448298400, 1264071094975, 3798101973315, 11406989362185, 34248214131465, 102803026929030, 308533903071390
Offset: 9
For n=9, label the balls A through I. The box containing ball A can contain 8*7/2 = 28 combinations of other balls. There are 6 balls for the other two boxes, so there are A272352(6) = 10 combinations for those two boxes. Thus, a(9) = 28*10 = 280. - _Michael B. Porter_, Jul 01 2016
- Vincenzo Librandi, Table of n, a(n) for n = 9..1000
- I. Mezo, Periodicity of the last digits of some combinatorial sequences, arXiv preprint arXiv:1308.1637 [math.CO], 2013 (second formula on page 16 is incorrect).
- Index entries for linear recurrences with constant coefficients, signature (14,-85,294,-639,906,-839,490,-164,24).
-
[(1/3)*(1/16)*(6*n^4-12*n^3-3*2^n*n^2+42*n^2-9*2^n*n+12*n+8*3^n-3*2^(n+3)+24): n in [9..40]];
-
Table[(1/3) (1/16) (6 n^4 - 12 n^3 - 3 2^n n^2 + 42 n^2 - 9 2^n n + 12 n + 8 3^n - 3 2^(n + 3) + 24), {n, 9, 40}]
CoefficientList[Series[(280 - 1820*x + 4795*x^2 - 6615*x^3 + 5106*x^4 - 2100*x^5 + 360*x^6)/((1 - 3*x)*(1 - 2*x)^3*(1 - x)^5), {x, 0, 40}], x] (* Stefano Spezia, Oct 04 2018 *)
-
Vec(x^9*(280 - 1820*x + 4795*x^2 - 6615*x^3 + 5106*x^4 - 2100*x^5 + 360*x^6)/((1 - 3*x)*(1 - 2*x)^3*(1 - x)^5) + O(x^40)) \\ Stefano Spezia, Oct 04 2018
Data, formulas and programs corrected for erroneous formula in Mezo's paper by
Bruno Berselli, May 21 2016
A200092
The number of ways of putting n labeled items into k labeled boxes so that each box receives at least 3 objects.
Original entry on oeis.org
1, 1, 1, 1, 20, 1, 70, 1, 182, 1, 420, 1680, 1, 912, 12600, 1, 1914, 62370, 1, 3938, 256410, 369600, 1, 8008, 949806, 4804800, 1, 16172, 3297294, 38678640, 1, 32526, 10966956, 248047800, 168168000
Offset: 3
Table begins
n\k | 1 2 3
----+-----------------
3 | 1
4 | 1
5 | 1
6 | 1 20
7 | 1 70
8 | 1 182
9 | 1 420 1680
10 | 1 912 12600
11 | 1 1914 62370
...
T(6,2) = 20: The arrangements of 6 objects into 2 boxes { } and [ ] so that each box contains at least 3 items are {1,2,3}[4,5,6], {1,2,4}[3,5,6], {1,2,5}[3,4,6], {1,2,6}[3,4,5], {1,3,4}[2,5,6], {1,3,5}[2,4,6], {1,3,6}[2,4,5], {1,4,5}[2,3,6], {1,4,6}[2,3,5], {1,5,6}[2,3,4] and the 10 other possibilities where the contents of a pair of boxes are swapped.
A352611
a(n) is the number of different ways to partition the set of vertices of a convex n-gon into 5 polygons.
Original entry on oeis.org
1401400, 28028000, 333533200, 3073270200, 24234675465, 172096749825, 1134040872965, 7069307049805, 42240545297951, 244205509154607, 1375458924105651, 7586883537988755, 41147137237012950, 220107145169421510, 1164186829638102270, 6100518487069916910
Offset: 15
For n=17, the set of vertices of a convex 17-gon can be partitioned into 5 polygons in 333533200 different ways:
- as 4 triangles and one pentagon ((1/4!)*C(17,3)*C(14,3)*C(11,3)*C(8,3)*C(5,5) = 95295200 different ways) or
- as 3 triangles and 2 quadrilaterals ((1/3!)*(1/2!)*C(17,3)*C(14,3)*C(11,3)*C(8,4)*C(4,4) = 238238000 different ways).
-
A059022 := proc(n,k)
option remember;
if n<3 then
0;
elif n < 6 and k=1 then
1 ;
else
k*procname(n-1,k)+binomial(n-1,2)*procname(n-3,k-1) ;
end if;
end proc:
A352611 := proc(n)
A059022(n,5) ;
end proc:
seq(A352611(n),n=15..50) ; # R. J. Mathar, Apr 08 2022
-
S3[3, 1] = S3[4, 1] = S3[5, 1] = 1;
S3[n_, k_] /; 1 <= k <= Floor[n/3] := S3[n, k] = k*S3[n-1, k] + Binomial[n-1, 2]*S3[n-3, k-1];
S3[, ] = 0;
a[n_] := S3[n, 5];
Table[a[n], {n, 15, 50}] (* Jean-François Alcover, Jul 06 2022 *)
Showing 1-10 of 11 results.
Comments