Original entry on oeis.org
1, 0, 0, 1, 1, 1, 11, 36, 92, 491, 2537
Offset: 1
- J. Riordan, A budget of rhyme scheme counts, pp. 455 - 465 of Second International Conference on Combinatorial Mathematics, New York, April 4-7, 1978. Edited by Allan Gewirtz and Louis V. Quintas. Annals New York Academy of Sciences, 319, 1979.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
A000296
Set partitions without singletons: number of partitions of an n-set into blocks of size > 1. Also number of cyclically spaced (or feasible) partitions.
Original entry on oeis.org
1, 0, 1, 1, 4, 11, 41, 162, 715, 3425, 17722, 98253, 580317, 3633280, 24011157, 166888165, 1216070380, 9264071767, 73600798037, 608476008122, 5224266196935, 46499892038437, 428369924118314, 4078345814329009, 40073660040755337, 405885209254049952, 4232705122975949401
Offset: 0
a(4) = card({{{1, 2}, {3, 4}}, {{1, 4}, {2, 3}}, {{1, 3}, {2, 4}}, {{1, 2, 3, 4}}}) = 4.
- Martin Gardner in Sci. Amer. May 1977.
- D. E. Knuth, The Art of Computer Programming, vol. 4A, Combinatorial Algorithms, Section 7.2.1.5 (p. 436).
- G. Pólya and G. Szegő, Problems and Theorems in Analysis, Springer-Verlag, NY, 2 vols., 1972, Vol. 1, p. 228.
- J. Riordan, A budget of rhyme scheme counts, pp. 455-465 of Second International Conference on Combinatorial Mathematics, New York, April 4-7, 1978. Edited by Allan Gewirtz and Louis V. Quintas. Annals New York Academy of Sciences, 319, 1979.
- J. Shallit, A Triangle for the Bell numbers, in V. E. Hoggatt, Jr. and M. Bicknell-Johnson, A Collection of Manuscripts Related to the Fibonacci Sequence, 1980, pp. 69-71.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Alois P. Heinz, Table of n, a(n) for n = 0..575 (first 101 terms from T. D. Noe)
- Yasemin Alp and E. Gokcen Kocer, Exponential Almost-Riordan Arrays, Results Math. (2024) Vol. 79, 173.
- Joerg Arndt and N. J. A. Sloane, Counting Words that are in "Standard Order".
- E. Bach, Random bisection and evolutionary walks, J. Applied Probability, v. 38, pp. 582-596, 2001.
- M. Bauer and O. Golinelli, Random incidence matrices: Moments of the spectral density, arXiv:cond-mat/0007127 [cond-mat.stat-mech], 2000-2001. See Sect. 3.2; J. Stat. Phys. 103, 301-307 (2001).
- H. D. Becker, Solution to problem E 461, American Math Monthly 48 (1941), 701-702.
- F. R. Bernhart, Catalan, Motzkin and Riordan numbers, Discr. Math., 204 (1999) 73-112.
- F. R. Bernhart, Fundamental chromatic numbers, Unpublished. (Annotated scanned copy)
- F. R. Bernhart & N. J. A. Sloane, Correspondence, 1977.
- J. R. Britnell and M. Wildon, Bell numbers, partition moves and the eigenvalues of the random-to-top shuffle in types A, B and D, arXiv 1507.04803 [math.CO], 2015.
- David Callan, On conjugates for set partitions and integer compositions [math.CO].
- Pascal Caron, Jean-Gabriel Luque, Ludovic Mignot, and Bruno Patrou, State complexity of catenation combined with a boolean operation: a unified approach, arXiv preprint arXiv:1505.03474 [cs.FL], 2015.
- Robert Coquereaux and Jean-Bernard Zuber, Counting partitions by genus. II. A compendium of results, arXiv:2305.01100 [math.CO], 2023. See p. 3.
- Éva Czabarka, Péter L. Erdős, Virginia Johnson, Anne Kupczok and László A. Székely, Asymptotically normal distribution of some tree families relevant for phylogenetics, and of partitions without singletons, arXiv preprint arXiv:1108.6015 [math.CO], 2011.
- Gesualdo Delfino and Jacopo Viti, Potts q-color field theory and scaling random cluster model, arXiv preprint arXiv:1104.4323 [hep-th], 2011.
- E. A. Enneking and J. C. Ahuja, Generalized Bell numbers, Fib. Quart., 14 (1976), 67-73.
- Steven R. Finch, Moments of sums, April 23, 2004. [Cached copy, with permission of the author]
- Robert C. Griffiths, P. A. Jenkins, and S. Lessard, A coalescent dual process for a Wright-Fisher diffusion with recombination and its application to haplotype partitioning, arXiv preprint arXiv:1604.04145 [q-bio.PE], 2016.
- Aoife Hennessy, A Study of Riordan Arrays with Applications to Continued Fractions, Orthogonal Polynomials and Lattice Paths, Ph. D. Thesis, Waterford Institute of Technology, Oct. 2011.
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 16.
- V. P. Johnson, Enumeration Results on Leaf Labeled Trees, Ph. D. Dissertation, Univ. Southern Calif., 2012.
- J. W. Layman, The Hankel Transform and Some of its Properties, J. Integer Sequences, 4 (2001), #01.1.5.
- Peter Luschny, Set partitions.
- Gregorio Malajovich, Complexity of sparse polynomial solving: homotopy on toric varieties and the condition metric, arXiv preprint arXiv:1606.03410 [math.NA], 2016.
- Toufik Mansour and Mark Shattuck, A recurrence related to the Bell numbers, INTEGERS 11 (2011), #A67.
- T. Mansour and A. O. Munagi, Set partitions with circular successions, European Journal of Combinatorics, 42 (2014), 207-216.
- I. Mezo, Periodicity of the last digits of some combinatorial sequences, J. Integer Seq. 17, Article 14.1.1, 2014.
- Scott Morrison, Noah Snyder, and Dylan P. Thurston, Towards the quantum exceptional series, arXiv:2402.03637 [math.QA], 2024. See p. 39.
- E. Norton, Symplectic Reflection Algebras in Positive Characteristic as Ore Extensions, arXiv preprint arXiv:1302.5411 [math.RA], 2013.
- Rosa Orellana, Nancy Wallace, and Mike Zabrocki, Quasipartition and planar quasipartition algebras, Sém. Lotharingien Comb., Proc. 36th Conf. Formal Power Series Alg. Comb. (2024) Vol. 91B, Art. No. 50. See p. 7.
- Aleksandar Petojević, Marjana Gorjanac Ranitović, and Milinko Mandić, New equivalents for Kurepa's hypothesis for left factorial, Univ. Novi Sad (2023).
- Tilman Piesk, Table showing non-singleton partitions for n = 1..6.
- R. A. Proctor, Let's Expand Rota's Twelvefold Way for Counting Partitions!, arXiv:math/0606404 [math.CO], 2006-2007.
- Jocelyn Quaintance and Harris Kwong, A combinatorial interpretation of the Catalan and Bell number difference tables, Integers, 13 (2013), #A29.
- D. Reidenbach and J. C. Schneider, Morphically Primitive Words. In Pierre Arnoux, Nicolas Bedaride and Julien Cassaigne, editors, Proc. 6th International Conference on Words, WORDS 2007, pages 262-272. 2007. [Different from the paper with the same name, referenced below.]
- Daniel Reidenbach and Johannes C. Schneider, Morphically primitive words, (2009). See Table 1.
- Daniel Reidenbach and Johannes C. Schneider, Morphically primitive words, Theoretical Computer Science, (2009), 140 (21-23), pp. 2148-2161.
- J. Riordan, Cached copy of paper.
- Jeffrey Shallit, A Triangle for the Bell numbers, in V. E. Hoggatt, Jr. and M. Bicknell-Johnson, A Collection of Manuscripts Related to the Fibonacci Sequence, 1980, pp. 69-71.
- Index entries for related partition-counting sequences
-
[1,0] cat [ n le 1 select 1 else Bell(n)-Self(n-1) : n in [1..40]]; // Vincenzo Librandi, Jun 22 2015
-
spec := [ B, {B=Set(Set(Z,card>1))}, labeled ]; [seq(combstruct[count](spec, size=n), n=0..30)];
with(combinat): A000296 :=n->(-1)^n + add((-1)^(j-1)*bell(n-j),j=1..n): seq(A000295(n),n=0..30); # Emeric Deutsch, Oct 29 2006
f:=exp(exp(x)-1-x): fser:=series(f, x=0, 31): 1, seq(n!*coeff(fser, x^n), n=1..23); # Zerinvary Lajos, Nov 22 2006
G:={P=Set(Set(Atom,card>=2))}: combstruct[gfsolve](G,unlabeled,x): seq(combstruct[count]([P,G,labeled], size=i), i=0..23); # Zerinvary Lajos, Dec 16 2007
# [a(0),a(1),..,a(n)]
A000296_list := proc(n)
local A, R, i, k;
if n = 0 then return 1 fi;
A := array(0..n-1);
A[0] := 1; R := 1;
for i from 0 to n-2 do
A[i+1] := A[0] - A[i];
A[i] := A[0];
for k from i by -1 to 1 do
A[k-1] := A[k-1] + A[k] od;
R := R,A[i+1];
od;
R,A[0]-A[i] end:
A000296_list(100); # Peter Luschny, Apr 09 2011
-
nn = 25; Range[0, nn]! CoefficientList[Series[Exp[Exp[x] - 1 - x], {x, 0, nn}], x]
(* Second program: *)
a[n_] := a[n] = If[n==0, 1, Sum[Binomial[n-1, i]*a[n-i-1], {i, 1, n-1}]]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Feb 06 2016, after Vladimir Kruchinin *)
spsu[,{}]:={{}};spsu[foo,set:{i_,_}]:= Join@@Function[s,Prepend[#,s]&/@spsu[ Select[foo,Complement[#, Complement[set,s]]=={}&], Complement[set,s]]]/@Cases[foo,{i,_}];
Table[Length[spsu[Select[Subsets[Range[n]],Select[Partition[Range[n],2,1,1], Function[ed,Complement[ed,#]=={}]]=={}&],Range[n]]],{n,8}] (* Gus Wiseman, Feb 10 2019 *)
s = 1; Join[{1}, Table[s = BellB[n] - s, {n, 0, 25}]] (* Vaclav Kotesovec, Jun 20 2022 *)
-
a(n):=if n=0 then 1 else sum(binomial(n-1,i)*a(n-i-1),i,1,n-1); /* Vladimir Kruchinin, Feb 22 2015 */
-
a(n) = if(n<2, n==0, subst( polinterpolate( Vec( serlaplace( exp( exp( x+O(x^n)/x )-1 ) ) ) ), x, n) )
-
from itertools import accumulate, islice
def A000296_gen():
yield from (1,0)
blist, a, b = (1,), 0, 1
while True:
blist = list(accumulate(blist, initial = (b:=blist[-1])))
yield (a := b-a)
A000296_list = list(islice(A000296_gen(),20)) # Chai Wah Wu, Jun 22 2022
A057814
Number of partitions of an n-set into blocks of size > 4.
Original entry on oeis.org
1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 127, 463, 1255, 3004, 6722, 140570, 1039260, 5371627, 23202077, 90048525, 814737785, 7967774337, 62895570839, 417560407223, 2455461090505, 18440499041402, 179627278800426, 1770970802250146
Offset: 0
Steven C. Fairgrieve (fsteven(AT)math.wvu.edu), Nov 06 2000
-
G:={P=Set(Set(Atom,card>=5))}:combstruct[gfsolve](G,labeled,x):seq(combstruct[count]([P,G,labeled],size=i),i=0..27); # Zerinvary Lajos, Dec 16 2007
-
max = 27; CoefficientList[ Series[ Exp[ Exp[x] - Normal[ Series[ Exp[x], {x, 0, 4}]]], {x, 0, max}], x]*Range[0, max]!(* Jean-François Alcover, Apr 25 2012, from e.g.f. *)
A057837
Number of partitions of a set of n elements where the partitions are of size > 3.
Original entry on oeis.org
1, 0, 0, 0, 1, 1, 1, 1, 36, 127, 337, 793, 7525, 48764, 238954, 997790, 6401435, 49107697, 345482807, 2150694855, 14656830110, 116678887407, 978172378669, 7886661080873, 63905475745765, 553437891603452, 5122279358273976, 48331088541366296, 458771027309344261
Offset: 0
Steven C. Fairgrieve (fsteven(AT)math.wvu.edu), Nov 06 2000
-
G:={P=Set(Set(Atom,card>=4))}:combstruct[gfsolve](G,unlabeled,x):seq(combstruct[count]([P,G,labeled],size=i),i=0..26); # Zerinvary Lajos, Dec 16 2007
-
With[{nn=30},CoefficientList[Series[Exp[Exp[x]-1-x-x^2/2-x^3/6],{x,0,nn}], x]Range[0,nn]!] (* Harvey P. Dale, Jun 28 2012 *)
A059022
Triangle of Stirling numbers of order 3.
Original entry on oeis.org
1, 1, 1, 1, 10, 1, 35, 1, 91, 1, 210, 280, 1, 456, 2100, 1, 957, 10395, 1, 1969, 42735, 15400, 1, 4004, 158301, 200200, 1, 8086, 549549, 1611610, 1, 16263, 1827826, 10335325, 1401400, 1, 32631, 5903898, 57962905, 28028000, 1, 65382, 18682014, 297797500
Offset: 3
Barbara Haas Margolius (margolius(AT)math.csuohio.edu), Dec 14 2000
There are 10 ways of partitioning a set N of cardinality 6 into 2 blocks each of cardinality at least 3, so S_3(6,2) = 10.
From _Wesley Ivan Hurt_, Feb 24 2022: (Start)
Triangle starts:
1;
1;
1;
1, 10;
1, 35;
1, 91;
1, 210, 280;
1, 456, 2100;
1, 957, 10395;
1, 1969, 42735, 15400;
...
(End)
- L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 222.
- J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 76.
- Gilles Bonnet and Anna Gusakova, Concentration inequalities for Poisson U-statistics, arXiv:2404.16756 [math.PR], 2024. See p. 17.
- Antal E. Fekete, Apropos two notes on notation, Amer. Math. Monthly, 101 (1994), 771-778.
- Gergő Nemes, On the Coefficients of the Asymptotic Expansion of n!, J. Int. Seq. 13 (2010), 10.6.6.
-
b:= proc(n) option remember; `if`(n=0, 1, add(
expand(x*b(n-j))*binomial(n-1, j-1), j=3..n))
end:
T:= n-> (p-> seq(coeff(p, x, i), i=1..degree(p)))(b(n)):
seq(T(n), n=3..20); # Alois P. Heinz, Feb 21 2022
# alternative
A059022 := proc(n, k)
option remember;
if n<3 then
0;
elif n < 6 and k=1 then
1 ;
else
k*procname(n-1, k)+binomial(n-1, 2)*procname(n-3, k-1) ;
end if;
end proc: # R. J. Mathar, Apr 15 2022
-
S3[3, 1] = S3[4, 1] = S3[5, 1] = 1; S3[n_, k_] /; 1 <= k <= Floor[n/3] := S3[n, k] = k*S3[n-1, k] + Binomial[n-1, 2]*S3[n-3, k-1]; S3[, ] = 0; Flatten[ Table[ S3[n, k], {n, 3, 20}, {k, 1, Floor[n/3]}]] (* Jean-François Alcover, Feb 21 2012 *)
A293024
Square array A(n,k), n>=0, k>=0, read by antidiagonals, where column k is the expansion of e.g.f. exp(exp(x) - Sum_{i=0..k} x^i/i!).
Original entry on oeis.org
1, 1, 1, 1, 0, 2, 1, 0, 1, 5, 1, 0, 0, 1, 15, 1, 0, 0, 1, 4, 52, 1, 0, 0, 0, 1, 11, 203, 1, 0, 0, 0, 1, 1, 41, 877, 1, 0, 0, 0, 0, 1, 11, 162, 4140, 1, 0, 0, 0, 0, 1, 1, 36, 715, 21147, 1, 0, 0, 0, 0, 0, 1, 1, 92, 3425, 115975, 1, 0, 0, 0, 0, 0, 1, 1, 36, 491, 17722, 678570
Offset: 0
Square array begins:
1, 1, 1, 1, 1, 1, 1, 1, ...
1, 0, 0, 0, 0, 0, 0, 0, ...
2, 1, 0, 0, 0, 0, 0, 0, ...
5, 1, 1, 0, 0, 0, 0, 0, ...
15, 4, 1, 1, 0, 0, 0, 0, ...
52, 11, 1, 1, 1, 0, 0, 0, ...
203, 41, 11, 1, 1, 1, 0, 0, ...
877, 162, 36, 1, 1, 1, 1, 0, ...
-
A:= proc(n, k) option remember; `if`(n=0, 1, add(
A(n-j, k)*binomial(n-1, j-1), j=1+k..n))
end:
seq(seq(A(n, d-n), n=0..d), d=0..14); # Alois P. Heinz, Sep 28 2017
-
A[0, _] = 1;
A[n_, k_] /; 0 <= k <= n := A[n, k] = Sum[A[n-j, k] Binomial[n-1, j-1], {j, k+1, n}];
A[, ] = 0;
Table[A[n-k, k], {n, 0, 11}, {k, n, 0, -1}] // Flatten (* Jean-François Alcover, Dec 06 2019 *)
-
def ncr(n, r)
return 1 if r == 0
(n - r + 1..n).inject(:*) / (1..r).inject(:*)
end
def A(k, n)
ary = [1]
(1..n).each{|i| ary << (k..i - 1).inject(0){|s, j| s + ncr(i - 1, j) * ary[-1 - j]}}
ary
end
def A293024(n)
a = []
(0..n).each{|i| a << A(i, n - i)}
ary = []
(0..n).each{|i|
(0..i).each{|j|
ary << a[i - j][j]
}
}
ary
end
p A293024(20)
A293038
E.g.f.: exp(1 + x + x^2/2! - exp(x)).
Original entry on oeis.org
1, 0, 0, -1, -1, -1, 9, 34, 90, -71, -1645, -9439, -25367, 45902, 1070146, 7122361, 24063637, -54352333, -1501032375, -12319959348, -53177369044, 80189626539, 3910291080509, 40317032441401, 228707685648269, 38882013140648, -16392939262378536
Offset: 0
-
seq(factorial(n) * coeftayl(exp(1+x+x^2/2!-exp(x)), x = 0, n),n = 0..50); # Muniru A Asiru, Oct 05 2017
-
my(x='x+O('x^66)); Vec(serlaplace(exp(-exp(x)+1+x+x^2/2)))
A339014
E.g.f.: exp(2 * (exp(x) - 1 - x - x^2 / 2)).
Original entry on oeis.org
1, 0, 0, 2, 2, 2, 42, 142, 366, 3082, 18626, 86990, 596158, 4485626, 30214498, 224897662, 1871664190, 15587540042, 134045407458, 1231183979886, 11725017784574, 114812031304986, 1170100796863202, 12371771640238174, 134796972965052350, 1514854948728869354
Offset: 0
-
nmax = 25; CoefficientList[Series[Exp[2 (Exp[x] - 1 - x - x^2/2)], {x, 0, nmax}], x] Range[0, nmax]!
a[0] = 1; a[n_] := a[n] = 2 Sum[Binomial[n - 1, k - 1] a[n - k], {k, 3, n}]; Table[a[n], {n, 0, 25}]
-
my(x='x+O('x^30)); Vec(serlaplace(exp(2 * (exp(x) - 1 - x - x^2/2)))) \\ Michel Marcus, Nov 19 2020
A005002
Number of rhyme schemes (see reference for precise definition).
Original entry on oeis.org
1, 4, 13, 41, 134, 471, 1819, 7778, 36703, 189381, 1057332, 6328261, 40300959, 271501240, 1925961025, 14332064197, 111528998198, 905134802555, 7643011810167, 67010181855706, 608890179868163, 5724496098183649
Offset: 1
- J. Riordan, A budget of rhyme scheme counts, pp. 455 - 465 of Second International Conference on Combinatorial Mathematics, New York, April 4-7, 1978. Edited by Allan Gewirtz and Louis V. Quintas. Annals New York Academy of Sciences, 319, 1979.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
-
a005002 n = a005002_list !! (n-1)
a005002_list = 1 : zipWith (+) (map (* 2) a005002_list)
(drop 2 a000110_list)
-- Reinhard Zumkeller, Jun 19 2015
-
A000110 := proc(n) combinat[bell](n) ; end:
A005001:=n->if n = 0 then 0; else add(combinat[bell](k),k=0..n); fi;
A102661 := proc(n,k) add(combinat[stirling2](n,i),i=1..k) ; end:
beta := proc(n,k) if k= 1 then A005001(n) ; elif k= n then 1 ; else k*beta(n-1,k)+A000110(n-1)-A102661(n-1,k-2) ; fi ; end:
A005002 := proc(n) beta(n,2) ; end:
seq(A005002(n),n=2..30) ; # R. J. Mathar, Jul 15 2008
-
a[1]=1; a[n_] := a[n] = 2a[n-1] + BellB[n]; a /@ Range[22]
(* Jean-François Alcover, May 19 2011, after R. J. Mathar *)
nxt[{n_,a_}]:={n+1,2a+BellB[n+1]}; Transpose[NestList[nxt,{1,1},30]] [[2]] (* Harvey P. Dale, Apr 20 2015 *)
A341283
Number of ways to partition n labeled elements into sets of different sizes of at least 3.
Original entry on oeis.org
1, 0, 0, 1, 1, 1, 1, 36, 57, 211, 331, 958, 29228, 64065, 294659, 1232479, 3549717, 11296603, 557617987, 1512758550, 8514685860, 41183585167, 251022906729, 838303110637, 4183056225010, 263978773601641, 887708421995331, 5813843897797861, 32212405278588967, 216518890998518716
Offset: 0
-
b:= proc(n, i) option remember; `if`(n=0, 1,
`if`(i>n, 0, b(n, i+1)+b(n-i, i+1)*binomial(n, i)))
end:
a:= n-> b(n, 3):
seq(a(n), n=0..30); # Alois P. Heinz, Apr 28 2021
-
nmax = 29; CoefficientList[Series[Product[(1 + x^k/k!), {k, 3, nmax}], {x, 0, nmax}], x] Range[0, nmax]!
a[0] = 1; a[n_] := a[n] = -(n - 1)! Sum[DivisorSum[k, # (-#!)^(-k/#) &, # > 2 &] a[n - k]/(n - k)!, {k, 1, n}]; Table[a[n], {n, 0, 29}]
Showing 1-10 of 15 results.
Comments