cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 15 results. Next

A005000 Erroneous version of A006505.

Original entry on oeis.org

1, 0, 0, 1, 1, 1, 11, 36, 92, 491, 2537
Offset: 1

Views

Author

Keywords

Comments

A published but incorrect sequence. The OEIS policy is to include such sequences together with a pointer to the correct entry.

References

  • J. Riordan, A budget of rhyme scheme counts, pp. 455 - 465 of Second International Conference on Combinatorial Mathematics, New York, April 4-7, 1978. Edited by Allan Gewirtz and Louis V. Quintas. Annals New York Academy of Sciences, 319, 1979.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

A000296 Set partitions without singletons: number of partitions of an n-set into blocks of size > 1. Also number of cyclically spaced (or feasible) partitions.

Original entry on oeis.org

1, 0, 1, 1, 4, 11, 41, 162, 715, 3425, 17722, 98253, 580317, 3633280, 24011157, 166888165, 1216070380, 9264071767, 73600798037, 608476008122, 5224266196935, 46499892038437, 428369924118314, 4078345814329009, 40073660040755337, 405885209254049952, 4232705122975949401
Offset: 0

Views

Author

Keywords

Comments

a(n+2) = p(n+1) where p(x) is the unique degree-n polynomial such that p(k) = A000110(k) for k = 0, 1, ..., n. - Michael Somos, Oct 07 2003
Number of complete rhyming schemes.
Whereas the Bell number B(n) (A000110(n)) is the number of terms in the polynomial that expresses the n-th moment of a probability distribution as a function of the first n cumulants, these numbers give the number of terms in the corresponding expansion of the central moment as a function of the first n cumulants. - Michael Hardy (hardy(AT)math.umn.edu), Jan 26 2005
a(n) is the number of permutations on [n] for which the left-to-right maxima coincide with the descents (entries followed by a smaller number). For example, a(4) counts 2143, 3142, 3241, 4123. - David Callan, Jul 20 2005
From Gus Wiseman, Feb 10 2019: (Start)
Also the number of stable partitions of an n-cycle, where a stable partition of a graph is a set partition of the vertex set such that no edge has both ends in the same block. A bijective proof is given in David Callan's article. For example, the a(5) = 11 stable partitions are:
{{1},{2},{3},{4},{5}}
{{1},{2},{3,5},{4}}
{{1},{2,4},{3},{5}}
{{1},{2,5},{3},{4}}
{{1,3},{2},{4},{5}}
{{1,4},{2},{3},{5}}
{{1},{2,4},{3,5}}
{{1,3},{2,4},{5}}
{{1,3},{2,5},{4}}
{{1,4},{2},{3,5}}
{{1,4},{2,5},{3}}
(End)
Also number of partitions of {1, 2, ..., n-1} with singletons. E.g., a(4) = 4: {1|2|3, 12|3, 13|2, 1|23}. Also number of cyclical adjacencies partitions of {1, 2, ..., n-1}. E.g., a(4) = 4: {12|3, 13|2, 1|23, 123}. The two partitions can be mapped by a Kreweras bijection. - Yuchun Ji, Feb 22 2021
Also the k-th central moment of a Poisson random variable with mean 1. a(n) = E[(X-1)^n, X~Poisson(1)]. - Thomas Dybdahl Ahle, Dec 14 2022

Examples

			a(4) = card({{{1, 2}, {3, 4}}, {{1, 4}, {2, 3}}, {{1, 3}, {2, 4}}, {{1, 2, 3, 4}}}) = 4.
		

References

  • Martin Gardner in Sci. Amer. May 1977.
  • D. E. Knuth, The Art of Computer Programming, vol. 4A, Combinatorial Algorithms, Section 7.2.1.5 (p. 436).
  • G. Pólya and G. Szegő, Problems and Theorems in Analysis, Springer-Verlag, NY, 2 vols., 1972, Vol. 1, p. 228.
  • J. Riordan, A budget of rhyme scheme counts, pp. 455-465 of Second International Conference on Combinatorial Mathematics, New York, April 4-7, 1978. Edited by Allan Gewirtz and Louis V. Quintas. Annals New York Academy of Sciences, 319, 1979.
  • J. Shallit, A Triangle for the Bell numbers, in V. E. Hoggatt, Jr. and M. Bicknell-Johnson, A Collection of Manuscripts Related to the Fibonacci Sequence, 1980, pp. 69-71.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

A diagonal of triangle in A106436.
Row sums of the triangle of associated Stirling numbers of second kind A008299. - Philippe Deléham, Feb 10 2005
Row sums of the triangle of basic multinomial coefficients A178866. - Johannes W. Meijer, Jun 21 2010
Row sums of A105794. - Peter Bala, Jan 14 2015
Row sums of A261139, main diagonal of A261137.
Column k=0 of A216963.
Column k=0 of A124323.

Programs

  • Magma
    [1,0] cat [ n le 1 select 1 else Bell(n)-Self(n-1) : n in [1..40]]; // Vincenzo Librandi, Jun 22 2015
    
  • Maple
    spec := [ B, {B=Set(Set(Z,card>1))}, labeled ]; [seq(combstruct[count](spec, size=n), n=0..30)];
    with(combinat): A000296 :=n->(-1)^n + add((-1)^(j-1)*bell(n-j),j=1..n): seq(A000295(n),n=0..30); # Emeric Deutsch, Oct 29 2006
    f:=exp(exp(x)-1-x): fser:=series(f, x=0, 31): 1, seq(n!*coeff(fser, x^n), n=1..23); # Zerinvary Lajos, Nov 22 2006
    G:={P=Set(Set(Atom,card>=2))}: combstruct[gfsolve](G,unlabeled,x): seq(combstruct[count]([P,G,labeled], size=i), i=0..23); # Zerinvary Lajos, Dec 16 2007
    # [a(0),a(1),..,a(n)]
    A000296_list := proc(n)
    local A, R, i, k;
    if n = 0 then return 1 fi;
    A := array(0..n-1);
    A[0] := 1; R := 1;
    for i from 0 to n-2 do
       A[i+1] := A[0] - A[i];
       A[i] := A[0];
       for k from i by -1 to 1 do
          A[k-1] := A[k-1] + A[k] od;
       R := R,A[i+1];
    od;
    R,A[0]-A[i] end:
    A000296_list(100);  # Peter Luschny, Apr 09 2011
  • Mathematica
    nn = 25; Range[0, nn]! CoefficientList[Series[Exp[Exp[x] - 1 - x], {x, 0, nn}], x]
    (* Second program: *)
    a[n_] := a[n] = If[n==0, 1, Sum[Binomial[n-1, i]*a[n-i-1], {i, 1, n-1}]]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Feb 06 2016, after Vladimir Kruchinin *)
    spsu[,{}]:={{}};spsu[foo,set:{i_,_}]:= Join@@Function[s,Prepend[#,s]&/@spsu[ Select[foo,Complement[#, Complement[set,s]]=={}&], Complement[set,s]]]/@Cases[foo,{i,_}];
    Table[Length[spsu[Select[Subsets[Range[n]],Select[Partition[Range[n],2,1,1], Function[ed,Complement[ed,#]=={}]]=={}&],Range[n]]],{n,8}] (* Gus Wiseman, Feb 10 2019 *)
    s = 1; Join[{1}, Table[s = BellB[n] - s, {n, 0, 25}]] (* Vaclav Kotesovec, Jun 20 2022 *)
  • Maxima
    a(n):=if n=0 then 1 else sum(binomial(n-1,i)*a(n-i-1),i,1,n-1); /* Vladimir Kruchinin, Feb 22 2015 */
    
  • PARI
    a(n) = if(n<2, n==0, subst( polinterpolate( Vec( serlaplace( exp( exp( x+O(x^n)/x )-1 ) ) ) ), x, n) )
    
  • Python
    from itertools import accumulate, islice
    def A000296_gen():
        yield from (1,0)
        blist, a, b = (1,), 0, 1
        while True:
            blist = list(accumulate(blist, initial = (b:=blist[-1])))
            yield (a := b-a)
    A000296_list = list(islice(A000296_gen(),20)) # Chai Wah Wu, Jun 22 2022

Formula

E.g.f.: exp(exp(x) - 1 - x).
B(n) = a(n) + a(n+1), where B = A000110 = Bell numbers [Becker].
Inverse binomial transform of Bell numbers (A000110).
a(n)= Sum_{k>=-1} (k^n/(k+1)!)/exp(1). - Vladeta Jovovic and Karol A. Penson, Feb 02 2003
a(n) = Sum_{k=0..n} ((-1)^(n-k))*binomial(n, k)*Bell(k) = (-1)^n + Bell(n) - A087650(n), with Bell(n) = A000110(n). - Wolfdieter Lang, Dec 01 2003
O.g.f.: A(x) = 1/(1-0*x-1*x^2/(1-1*x-2*x^2/(1-2*x-3*x^2/(1-... -(n-1)*x-n*x^2/(1- ...))))) (continued fraction). - Paul D. Hanna, Jan 17 2006
a(n) = Sum_{k = 0..n} {(-1)^(n-k) * Sum_{j = 0..k}((-1)^j * binomial(k,j) * (1-j)^n)/ k!} = sum over row n of A105794. - Tom Copeland, Jun 05 2006
a(n) = (-1)^n + Sum_{j=1..n} (-1)^(j-1)*B(n-j), where B(q) are the Bell numbers (A000110). - Emeric Deutsch, Oct 29 2006
Let A be the upper Hessenberg matrix of order n defined by: A[i, i-1] = -1, A[i,j] = binomial(j-1, i-1), (i <= j), and A[i, j] = 0 otherwise. Then, for n >= 2, a(n) = (-1)^(n)charpoly(A,1). - Milan Janjic, Jul 08 2010
From Sergei N. Gladkovskii, Sep 20 2012, Oct 11 2012, Dec 19 2012, Jan 15 2013, May 13 2013, Jul 20 2013, Oct 19 2013, Jan 25 2014: (Start)
Continued fractions:
G.f.: (2/E(0) - 1)/x where E(k) = 1 + 1/(1 + 2*x/(1 - 2*(k+1)*x/E(k+1))).
G.f.: 1/U(0) where U(k) = 1 - x*k - x^2*(k+1)/U(k+1).
G.f.: G(0)/(1+2*x) where G(k) = 1 - 2*x*(k+1)/((2*k+1)*(2*x*k-x-1) - x*(2*k+1)*(2*k+3)*(2*x*k-x-1)/(x*(2*k+3) - 2*(k+1)*(2*x*k-1)/G(k+1))).
G.f.: (G(0) - 1)/(x-1) where G(k) = 1 - 1/(1+x-k*x)/(1-x/(x-1/G(k+1))).
G.f.: 1 + x^2/(1+x)/Q(0) where Q(k) = 1-x-x/(1-x*(2*k+1)/(1-x-x/(1-x*(2*k+2)/Q(k+1)))).
G.f.: 1/(x*Q(0)) where Q(k) = 1 + 1/(x + x^2/(1 - x - (k+1)/Q(k+1))).
G.f.: -(1+(2*x+1)/G(0))/x where G(k) = x*k - x - 1 - (k+1)*x^2/G(k+1).
G.f.: T(0) where T(k) = 1 - x^2*(k+1)/( x^2*(k+1) - (1-x*k)*(1-x-x*k)/T(k+1)).
G.f.: (1 + x * Sum_{k>=0} (x^k / Product_{p=0..k}(1 - p*x))) / (1 + x). (End)
a(n) = Sum_{i=1..n-1} binomial(n-1,i)*a(n-i-1), a(0)=1. - Vladimir Kruchinin, Feb 22 2015
G.f. A(x) satisfies: A(x) = (1/(1 + x)) * (1 + x * A(x/(1 - x)) / (1 - x)). - Ilya Gutkovskiy, May 21 2021
a(n) ~ exp(n/LambertW(n) - n - 1) * n^(n-1) / (sqrt(1 + LambertW(n)) * LambertW(n)^(n-1)). - Vaclav Kotesovec, Jun 28 2022

Extensions

More terms, new description from Christian G. Bower, Nov 15 1999
a(23) corrected by Sean A. Irvine, Jun 22 2015

A057814 Number of partitions of an n-set into blocks of size > 4.

Original entry on oeis.org

1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 127, 463, 1255, 3004, 6722, 140570, 1039260, 5371627, 23202077, 90048525, 814737785, 7967774337, 62895570839, 417560407223, 2455461090505, 18440499041402, 179627278800426, 1770970802250146
Offset: 0

Views

Author

Steven C. Fairgrieve (fsteven(AT)math.wvu.edu), Nov 06 2000

Keywords

Crossrefs

Column k=4 of A293024.
Row sums of A059024.
Cf. A293040.

Programs

  • Maple
    G:={P=Set(Set(Atom,card>=5))}:combstruct[gfsolve](G,labeled,x):seq(combstruct[count]([P,G,labeled],size=i),i=0..27); # Zerinvary Lajos, Dec 16 2007
  • Mathematica
    max = 27; CoefficientList[ Series[ Exp[ Exp[x] - Normal[ Series[ Exp[x], {x, 0, 4}]]], {x, 0, max}], x]*Range[0, max]!(* Jean-François Alcover, Apr 25 2012, from e.g.f. *)

Formula

E.g.f.: exp(exp(x)-1-x-x^2/2-x^3/6-x^4/24).
a(0) = 1; a(n) = Sum_{k=5..n} binomial(n-1,k-1) * a(n-k). - Ilya Gutkovskiy, Feb 09 2020

A057837 Number of partitions of a set of n elements where the partitions are of size > 3.

Original entry on oeis.org

1, 0, 0, 0, 1, 1, 1, 1, 36, 127, 337, 793, 7525, 48764, 238954, 997790, 6401435, 49107697, 345482807, 2150694855, 14656830110, 116678887407, 978172378669, 7886661080873, 63905475745765, 553437891603452, 5122279358273976, 48331088541366296, 458771027309344261
Offset: 0

Views

Author

Steven C. Fairgrieve (fsteven(AT)math.wvu.edu), Nov 06 2000

Keywords

Crossrefs

Column k=3 of A293024.
Row sums of A059023.
Cf. A293039.

Programs

  • Maple
    G:={P=Set(Set(Atom,card>=4))}:combstruct[gfsolve](G,unlabeled,x):seq(combstruct[count]([P,G,labeled],size=i),i=0..26); # Zerinvary Lajos, Dec 16 2007
  • Mathematica
    With[{nn=30},CoefficientList[Series[Exp[Exp[x]-1-x-x^2/2-x^3/6],{x,0,nn}], x]Range[0,nn]!] (* Harvey P. Dale, Jun 28 2012 *)

Formula

E.g.f.: exp(exp(x)-1-x-x^2/2-x^3/6).
a(0) = 1; a(n) = Sum_{k=4..n} binomial(n-1,k-1) * a(n-k). - Ilya Gutkovskiy, Feb 09 2020

Extensions

Corrected and extended by Christian G. Bower and James Sellers, Nov 09 2000

A059022 Triangle of Stirling numbers of order 3.

Original entry on oeis.org

1, 1, 1, 1, 10, 1, 35, 1, 91, 1, 210, 280, 1, 456, 2100, 1, 957, 10395, 1, 1969, 42735, 15400, 1, 4004, 158301, 200200, 1, 8086, 549549, 1611610, 1, 16263, 1827826, 10335325, 1401400, 1, 32631, 5903898, 57962905, 28028000, 1, 65382, 18682014, 297797500
Offset: 3

Views

Author

Barbara Haas Margolius (margolius(AT)math.csuohio.edu), Dec 14 2000

Keywords

Comments

The number of partitions of the set N, |N|=n, into k blocks, all of cardinality greater than or equal to 3. This is the 3-associated Stirling number of the second kind (Comtet) or the Stirling number of order 3 (Fekete).
This is entered as a triangular array. The entries S_3(n,k) are zero for 3k>n, so these values are omitted. The initial entry in the sequence is S_3(3,1).
Rows are of lengths 1,1,1,2,2,2,3,3,3,...

Examples

			There are 10 ways of partitioning a set N of cardinality 6 into 2 blocks each of cardinality at least 3, so S_3(6,2) = 10.
From _Wesley Ivan Hurt_, Feb 24 2022: (Start)
Triangle starts:
  1;
  1;
  1;
  1,   10;
  1,   35;
  1,   91;
  1,  210,   280;
  1,  456,  2100;
  1,  957, 10395;
  1, 1969, 42735, 15400;
  ...
(End)
		

References

  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 222.
  • J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 76.

Crossrefs

Row sums give A006505.
Cf. A008299, A059023, A059024, A059025, A100861, A272352 (column 2), A272982 (column 3), A261724 (column 4), A352611 (column 5).

Programs

  • Maple
    b:= proc(n) option remember; `if`(n=0, 1, add(
          expand(x*b(n-j))*binomial(n-1, j-1), j=3..n))
        end:
    T:= n-> (p-> seq(coeff(p, x, i), i=1..degree(p)))(b(n)):
    seq(T(n), n=3..20);  # Alois P. Heinz, Feb 21 2022
    # alternative
    A059022 := proc(n, k)
        option remember;
        if n<3 then
            0;
        elif n < 6 and k=1 then
            1 ;
        else
            k*procname(n-1, k)+binomial(n-1, 2)*procname(n-3, k-1) ;
        end if;
    end proc:  # R. J. Mathar, Apr 15 2022
  • Mathematica
    S3[3, 1] = S3[4, 1] = S3[5, 1] = 1; S3[n_, k_] /; 1 <= k <= Floor[n/3] := S3[n, k] = k*S3[n-1, k] + Binomial[n-1, 2]*S3[n-3, k-1]; S3[, ] = 0; Flatten[ Table[ S3[n, k], {n, 3, 20}, {k, 1, Floor[n/3]}]] (* Jean-François Alcover, Feb 21 2012 *)

Formula

S_r(n+1,k) = k*S_r(n,k) + binomial(n,r-1)*S_r(n-r+1,k-1); for this sequence, r=3.
G.f.: Sum_{n>=0, k>=0} S_r(n,k)*u^k*t^n/n! = exp(u(e^t - Sum_{i=0..r-1} t^i/i!)).
T(n,k) = Sum_{j=0..min(n/2,k)} (-1)^j*B(n,j)*S_2(n-2j,k-j), where B are the Bessel numbers A100861 and S_2 are the 2-associated Stirling numbers of the second kind A008299. - Fabián Pereyra, Feb 20 2022

A293024 Square array A(n,k), n>=0, k>=0, read by antidiagonals, where column k is the expansion of e.g.f. exp(exp(x) - Sum_{i=0..k} x^i/i!).

Original entry on oeis.org

1, 1, 1, 1, 0, 2, 1, 0, 1, 5, 1, 0, 0, 1, 15, 1, 0, 0, 1, 4, 52, 1, 0, 0, 0, 1, 11, 203, 1, 0, 0, 0, 1, 1, 41, 877, 1, 0, 0, 0, 0, 1, 11, 162, 4140, 1, 0, 0, 0, 0, 1, 1, 36, 715, 21147, 1, 0, 0, 0, 0, 0, 1, 1, 92, 3425, 115975, 1, 0, 0, 0, 0, 0, 1, 1, 36, 491, 17722, 678570
Offset: 0

Views

Author

Seiichi Manyama, Sep 28 2017

Keywords

Comments

A(n,k) is the number of set partitions of [n] into blocks of size > k.

Examples

			Square array begins:
    1,   1,  1, 1, 1, 1, 1, 1, ...
    1,   0,  0, 0, 0, 0, 0, 0, ...
    2,   1,  0, 0, 0, 0, 0, 0, ...
    5,   1,  1, 0, 0, 0, 0, 0, ...
   15,   4,  1, 1, 0, 0, 0, 0, ...
   52,  11,  1, 1, 1, 0, 0, 0, ...
  203,  41, 11, 1, 1, 1, 0, 0, ...
  877, 162, 36, 1, 1, 1, 1, 0, ...
		

Crossrefs

Columns k=0..5 give A000110, A000296, A006505, A057837, A057814, A293025.
Rows n=0..1 give A000012, A000007.
Main diagonal gives A000007.
Cf. A182931, A282988 (as triangle), A293051, A293053.

Programs

  • Maple
    A:= proc(n, k) option remember; `if`(n=0, 1, add(
          A(n-j, k)*binomial(n-1, j-1), j=1+k..n))
        end:
    seq(seq(A(n, d-n), n=0..d), d=0..14);  # Alois P. Heinz, Sep 28 2017
  • Mathematica
    A[0, _] = 1;
    A[n_, k_] /; 0 <= k <= n := A[n, k] = Sum[A[n-j, k] Binomial[n-1, j-1], {j, k+1, n}];
    A[, ] = 0;
    Table[A[n-k, k], {n, 0, 11}, {k, n, 0, -1}] // Flatten (* Jean-François Alcover, Dec 06 2019 *)
  • Ruby
    def ncr(n, r)
      return 1 if r == 0
      (n - r + 1..n).inject(:*) / (1..r).inject(:*)
    end
    def A(k, n)
      ary = [1]
      (1..n).each{|i| ary << (k..i - 1).inject(0){|s, j| s + ncr(i - 1, j) * ary[-1 - j]}}
      ary
    end
    def A293024(n)
      a = []
      (0..n).each{|i| a << A(i, n - i)}
      ary = []
      (0..n).each{|i|
        (0..i).each{|j|
          ary << a[i - j][j]
        }
      }
      ary
    end
    p A293024(20)

Formula

E.g.f. of column k: Product_{i>k} exp(x^i/i!).
A(0,k) = 1, A(1,k) = A(2,k) = ... = A(k,k) = 0 and A(n,k) = Sum_{i=k..n-1} binomial(n-1,i)*A(n-1-i,k) for n > k.

A293038 E.g.f.: exp(1 + x + x^2/2! - exp(x)).

Original entry on oeis.org

1, 0, 0, -1, -1, -1, 9, 34, 90, -71, -1645, -9439, -25367, 45902, 1070146, 7122361, 24063637, -54352333, -1501032375, -12319959348, -53177369044, 80189626539, 3910291080509, 40317032441401, 228707685648269, 38882013140648, -16392939262378536
Offset: 0

Views

Author

Seiichi Manyama, Sep 28 2017

Keywords

Crossrefs

Column k=2 of A293051.
Cf. A000587 (k=0), A293037 (k=1), this sequence (k=2), A293039 (k=3), A293040 (k=4).
Cf. A006505.

Programs

  • Maple
    seq(factorial(n) * coeftayl(exp(1+x+x^2/2!-exp(x)), x = 0, n),n = 0..50); # Muniru A Asiru, Oct 05 2017
  • PARI
    my(x='x+O('x^66)); Vec(serlaplace(exp(-exp(x)+1+x+x^2/2)))

Formula

a(0) = 1; a(n) = -Sum_{k=3..n} binomial(n-1,k-1) * a(n-k). - Ilya Gutkovskiy, Nov 20 2020

A339014 E.g.f.: exp(2 * (exp(x) - 1 - x - x^2 / 2)).

Original entry on oeis.org

1, 0, 0, 2, 2, 2, 42, 142, 366, 3082, 18626, 86990, 596158, 4485626, 30214498, 224897662, 1871664190, 15587540042, 134045407458, 1231183979886, 11725017784574, 114812031304986, 1170100796863202, 12371771640238174, 134796972965052350, 1514854948728869354
Offset: 0

Views

Author

Ilya Gutkovskiy, Nov 19 2020

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 25; CoefficientList[Series[Exp[2 (Exp[x] - 1 - x - x^2/2)], {x, 0, nmax}], x] Range[0, nmax]!
    a[0] = 1; a[n_] := a[n] = 2 Sum[Binomial[n - 1, k - 1] a[n - k], {k, 3, n}]; Table[a[n], {n, 0, 25}]
  • PARI
    my(x='x+O('x^30)); Vec(serlaplace(exp(2 * (exp(x) - 1 - x - x^2/2)))) \\ Michel Marcus, Nov 19 2020

Formula

a(0) = 1; a(n) = 2 * Sum_{k=3..n} binomial(n-1,k-1) * a(n-k).
a(n) = Sum_{k=0..n} binomial(n,k) * A006505(k) * A006505(n-k).

A005002 Number of rhyme schemes (see reference for precise definition).

Original entry on oeis.org

1, 4, 13, 41, 134, 471, 1819, 7778, 36703, 189381, 1057332, 6328261, 40300959, 271501240, 1925961025, 14332064197, 111528998198, 905134802555, 7643011810167, 67010181855706, 608890179868163, 5724496098183649
Offset: 1

Views

Author

Keywords

References

  • J. Riordan, A budget of rhyme scheme counts, pp. 455 - 465 of Second International Conference on Combinatorial Mathematics, New York, April 4-7, 1978. Edited by Allan Gewirtz and Louis V. Quintas. Annals New York Academy of Sciences, 319, 1979.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Haskell
    a005002 n = a005002_list !! (n-1)
    a005002_list = 1 : zipWith (+) (map (* 2) a005002_list)
                                   (drop 2 a000110_list)
    -- Reinhard Zumkeller, Jun 19 2015
  • Maple
    A000110 := proc(n) combinat[bell](n) ; end:
    A005001:=n->if n = 0 then 0; else add(combinat[bell](k),k=0..n); fi;
    A102661 := proc(n,k) add(combinat[stirling2](n,i),i=1..k) ; end:
    beta := proc(n,k) if k= 1 then A005001(n) ; elif k= n then 1 ; else k*beta(n-1,k)+A000110(n-1)-A102661(n-1,k-2) ; fi ; end:
    A005002 := proc(n) beta(n,2) ; end:
    seq(A005002(n),n=2..30) ; # R. J. Mathar, Jul 15 2008
  • Mathematica
    a[1]=1; a[n_] := a[n] = 2a[n-1] + BellB[n]; a /@ Range[22]
    (* Jean-François Alcover, May 19 2011, after R. J. Mathar *)
    nxt[{n_,a_}]:={n+1,2a+BellB[n+1]}; Transpose[NestList[nxt,{1,1},30]] [[2]] (* Harvey P. Dale, Apr 20 2015 *)

Formula

a(k)=1. a(n) = k*a(n-1) + A000110(n-1) - A102661(n-1,k-2), k=2. - R. J. Mathar, Jul 15 2008

Extensions

More terms from R. J. Mathar, Jul 15 2008

A341283 Number of ways to partition n labeled elements into sets of different sizes of at least 3.

Original entry on oeis.org

1, 0, 0, 1, 1, 1, 1, 36, 57, 211, 331, 958, 29228, 64065, 294659, 1232479, 3549717, 11296603, 557617987, 1512758550, 8514685860, 41183585167, 251022906729, 838303110637, 4183056225010, 263978773601641, 887708421995331, 5813843897797861, 32212405278588967, 216518890998518716
Offset: 0

Views

Author

Ilya Gutkovskiy, Apr 28 2021

Keywords

Crossrefs

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0, 1,
         `if`(i>n, 0, b(n, i+1)+b(n-i, i+1)*binomial(n, i)))
        end:
    a:= n-> b(n, 3):
    seq(a(n), n=0..30);  # Alois P. Heinz, Apr 28 2021
  • Mathematica
    nmax = 29; CoefficientList[Series[Product[(1 + x^k/k!), {k, 3, nmax}], {x, 0, nmax}], x] Range[0, nmax]!
    a[0] = 1; a[n_] := a[n] = -(n - 1)! Sum[DivisorSum[k, # (-#!)^(-k/#) &, # > 2 &] a[n - k]/(n - k)!, {k, 1, n}]; Table[a[n], {n, 0, 29}]

Formula

E.g.f.: Product_{k>=3} (1 + x^k/k!).
Showing 1-10 of 15 results. Next