cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A194689 a(n) = Sum_{k=0..n} binomial(n,k)*w(k)*w(n-k) where w() = A000296().

Original entry on oeis.org

1, 0, 2, 2, 14, 42, 222, 1066, 6078, 36490, 238046, 1653610, 12214270, 95361866, 784071966, 6764984362, 61066919230, 575200190986, 5640081557598, 57450510336234, 606773139773054, 6633515763375306, 74950634205257630, 873995513192234410, 10504736507220958142, 129983468625156713354
Offset: 0

Views

Author

N. J. A. Sloane, Sep 01 2011

Keywords

References

  • D. E. Knuth, The Art of Computer Programming, vol. 4A, Combinatorial Algorithms, Section 7.2.1.5 (p. 771, Problem 37).

Crossrefs

Programs

  • Mathematica
    Table[Sum[(-1)^(n-k) * Binomial[n,k] * BellB[k,2] * 2^(n-k), {k, 0, n}], {n, 0, 25}] (* Vaclav Kotesovec, Jun 25 2022 *)
  • PARI
    N=66;  x='x+O('x^N);
    Q(k) = if (k>N, 1, 1 + x + x*k - x/(1 - 2*x*(k+1)/Q(k+1) ) );
    gf=1/Q(0);  Vec(Ser(gf))
    /* Joerg Arndt, Mar 07 2013 */
    
  • PARI
    my(N=66, x='x+O('x^N)); Vec(serlaplace(exp(2*(exp(x)-1-x)))) \\ Seiichi Manyama, Nov 20 2020

Formula

G.f.: 1/Q(0) where Q(k) = 1 + x + x*k - x/(1 - 2*x*(k+1)/Q(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Mar 07 2013
G.f.: 1/Q(0), where Q(k)= 1 - x*k - 2*x^2*(k+1)/Q(k+1); (continued fraction). - Sergei N. Gladkovskii, May 06 2013
E.g.f.: exp(2*(exp(x) - 1 - x)). - Ilya Gutkovskiy, Apr 07 2018
a(0) = 1; a(n) = 2 * Sum_{k=1..n-1} binomial(n-1,k) * a(n-1-k). - Seiichi Manyama, Nov 20 2020
a(n) ~ 4 * n^(n-2) * exp(n/LambertW(n/2) - n - 2) / (sqrt(1 + LambertW(n/2)) * LambertW(n/2)^(n-2)). - Vaclav Kotesovec, Jun 26 2022

A339017 E.g.f.: exp(2 * (exp(x) - 1 - x - x^2 / 2 - x^3 / 6)).

Original entry on oeis.org

1, 0, 0, 0, 2, 2, 2, 2, 142, 506, 1346, 3170, 53198, 375234, 1880738, 7919082, 72104190, 678488362, 5164781154, 33220643026, 271431061614, 2710340281426, 26278673924322, 228727591600826, 2081516848032222, 21560234032116154, 236863265302626722, 2521687569105476002
Offset: 0

Views

Author

Ilya Gutkovskiy, Nov 19 2020

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 27; CoefficientList[Series[Exp[2 (Exp[x] - 1 - x - x^2/2 - x^3/6)], {x, 0, nmax}], x] Range[0, nmax]!
    a[0] = 1; a[n_] := a[n] = 2 Sum[Binomial[n - 1, k - 1] a[n - k], {k, 4, n}]; Table[a[n], {n, 0, 27}]
  • PARI
    my(x='x+O('x^30)); Vec(serlaplace(exp(2*(exp(x) - 1 - x - x^2/2 - x^3/6)))) \\ Michel Marcus, Nov 19 2020

Formula

a(0) = 1; a(n) = 2 * Sum_{k=4..n} binomial(n-1,k-1) * a(n-k).
a(n) = Sum_{k=0..n} binomial(n,k) * A057837(k) * A057837(n-k).

A339027 E.g.f.: exp(2 * (exp(x) - 1 - x - x^2 / 2 - x^3 / 6 - x^4 / 24)).

Original entry on oeis.org

1, 0, 0, 0, 0, 2, 2, 2, 2, 2, 506, 1850, 5018, 12014, 26886, 1066782, 8193070, 42723722, 185108514, 719359762, 10426744914, 118490840686, 976376930502, 6583701431086, 38977418758494, 377188932759354, 4671829781287922, 51479602726372402, 483303800325691922
Offset: 0

Views

Author

Ilya Gutkovskiy, Nov 20 2020

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 28; CoefficientList[Series[Exp[2 (Exp[x] - 1 - x - x^2/2 - x^3/6 - x^4/24)], {x, 0, nmax}], x] Range[0, nmax]!
    a[0] = 1; a[n_] := a[n] = 2 Sum[Binomial[n - 1, k - 1] a[n - k], {k, 5, n}]; Table[a[n], {n, 0, 28}]
  • PARI
    my(x='x+O('x^30)); Vec(serlaplace(exp(2 * (exp(x) - 1 - x - x^2/2 - x^3/6 - x^4/24)))) \\ Michel Marcus, Nov 20 2020

Formula

a(0) = 1; a(n) = 2 * Sum_{k=5..n} binomial(n-1,k-1) * a(n-k).
a(n) = Sum_{k=0..n} binomial(n,k) * A057814(k) * A057814(n-k).

A355247 Expansion of e.g.f. exp(2*(exp(x) - 1 + x)).

Original entry on oeis.org

1, 4, 18, 90, 494, 2946, 18926, 130066, 950654, 7353794, 59954638, 513333618, 4601380766, 43062556322, 419742815726, 4252083713874, 44680229906622, 486145710591874, 5468499473222670, 63503107472489266, 760281866742088670, 9373065303624742498, 118858898763010225198
Offset: 0

Views

Author

Vaclav Kotesovec, Jun 25 2022

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 25; CoefficientList[Series[Exp[2*Exp[x]-2+2*x], {x, 0, nmax}], x] * Range[0, nmax]!
    Table[(BellB[n+2, 2] - BellB[n+1, 2])/4, {n, 0, 25}] (* Vaclav Kotesovec, Jul 21 2025 *)

Formula

a(n) ~ n^(n+2) * exp(n/LambertW(n/2) - n - 2) / (4 * sqrt(1 + LambertW(n/2)) * LambertW(n/2)^(n+2)).
a(n) = Sum_{k=0..n} binomial(n,k) * Bell(k+1) * Bell(n-k+1). - Ilya Gutkovskiy, Jun 26 2022

A336345 Square array T(n,k), n>=0, k>=0, read by antidiagonals, where column k is the expansion of e.g.f. exp(2 * (exp(x) - Sum_{j=0..k} x^j/j!)).

Original entry on oeis.org

1, 1, 2, 1, 0, 6, 1, 0, 2, 22, 1, 0, 0, 2, 94, 1, 0, 0, 2, 14, 454, 1, 0, 0, 0, 2, 42, 2430, 1, 0, 0, 0, 2, 2, 222, 14214, 1, 0, 0, 0, 0, 2, 42, 1066, 89918, 1, 0, 0, 0, 0, 2, 2, 142, 6078, 610182, 1, 0, 0, 0, 0, 0, 2, 2, 366, 36490, 4412798, 1, 0, 0, 0, 0, 0, 2, 2, 142, 3082, 238046, 33827974
Offset: 0

Views

Author

Seiichi Manyama, Nov 20 2020

Keywords

Examples

			Square array begins:
     1,   1,  1, 1, 1, 1, 1, ...
     2,   0,  0, 0, 0, 0, 0, ...
     6,   2,  0, 0, 0, 0, 0, ...
    22,   2,  2, 0, 0, 0, 0, ...
    94,  14,  2, 2, 0, 0, 0, ...
   454,  42,  2, 2, 2, 0, 0, ...
  2430, 222, 42, 2, 2, 2, 0, ...
		

Crossrefs

Columns k=0..4 give A001861, A194689, A339014, A339017, A339027.
Main diagonal gives A000007.
Cf. A293024.

Programs

  • PARI
    {T(n, k) = n!*polcoef(prod(j=k+1, n, exp((x^j+x*O(x^n))/j!))^2, n)}
    
  • Ruby
    def ncr(n, r)
      return 1 if r == 0
      (n - r + 1..n).inject(:*) / (1..r).inject(:*)
    end
    def A(k, n)
      ary = [1]
      (1..n).each{|i| ary << 2 * (k..i - 1).inject(0){|s, j| s + ncr(i - 1, j) * ary[-1 - j]}}
      ary
    end
    def A336345(n)
      a = []
      (0..n).each{|i| a << A(i, n - i)}
      ary = []
      (0..n).each{|i|
        (0..i).each{|j|
          ary << a[i - j][j]
        }
      }
      ary
    end
    p A336345(20)

Formula

E.g.f. of column k: (Product_{j>k} exp(x^j/j!))^2.
T(0,k) = 1, T(1,k) = T(2,k) = ... = T(k,k) = 0 and T(n,k) = 2 * Sum_{j=k..n-1} binomial(n-1,j)*T(n-1-j,k) for n > k.
Showing 1-5 of 5 results.