cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 13 results. Next

A217924 a(n) = n! * [x^n] exp(2*exp(x) - x - 2). Row sums of triangle A217537.

Original entry on oeis.org

1, 1, 3, 9, 35, 153, 755, 4105, 24323, 155513, 1064851, 7760745, 59895203, 487397849, 4166564147, 37298443977, 348667014723, 3395240969785, 34365336725715, 360837080222761, 3923531021460707, 44108832866004121, 511948390801374835, 6126363766802713481
Offset: 0

Views

Author

Peter Luschny, Oct 15 2012

Keywords

Comments

The inverse binomial transform of a(n) is A194689.
A087981(n) = Sum_{k=0..n} (-1)^k*s(n+1,k+1)*a(k);
|A000023(n)| = |Sum_{k=0..n} (-1)^(n-k)*s(n,k)*a(k)|
where s(n,k) are the unsigned Stirling numbers of first kind.
a(n) is the number of inequivalent set partitions of {1,2,...,n} where two blocks are considered equivalent when one can be obtained from the other by an alternating (even) permutation. - Geoffrey Critzer, Mar 17 2013

Examples

			a(3)=9 because we have: {1,2,3}; {1,3,2}; {1}{2,3}; {1}{3,2}; {2}{1,3}; {2}{3,1}; {3}{1,2}; {3}{2,1}; {1}{2}{3}. - _Geoffrey Critzer_, Mar 17 2013
		

Crossrefs

Similar recurrences: A124758, A243499, A284005, A329369, A341392, A372205.

Programs

  • Magma
    R:=PowerSeriesRing(Rationals(), 30);
    Coefficients(R!(Laplace( Exp(2*Exp(x) -x-2) ))); // G. C. Greubel, Jan 09 2025
  • Maple
    egf := exp(2*exp(x) - x - 2): ser := series(egf, x, 25):
    seq(n!*coeff(ser, x, n), n = 0..23);  # Peter Luschny, Apr 22 2024
  • Mathematica
    nn=23;Range[0,nn]!CoefficientList[Series[Exp[2 Exp[x]-x-2],{x,0,nn}],x]  (* Geoffrey Critzer, Mar 17 2013 *)
    nmax = 25; CoefficientList[Series[1/(1 - x + ContinuedFractionK[-2*k*x^2 , 1 - (k + 1)*x, {k, 1, nmax}]), {x, 0, nmax}], x] (* Vaclav Kotesovec, Sep 25 2017 *)
  • Maxima
    a(n):=sum(sum(binomial(n,k-j)*2^j*(-1)^(k-j)*stirling2(n-k+j,j),j,0,k),k,0,n); /* Vladimir Kruchinin, Feb 28 2015 */
    
  • Sage
    def A217924_list(n):
        T = A217537_triangle(n)
        return [add(T.row(n)) for n in range(n)]
    A217924_list(24)
    
  • SageMath
    def A217924_list(prec):
        P. = PowerSeriesRing(QQ, prec)
        return P( exp(2*exp(x)-x-2) ).egf_to_ogf().list()
    print(A217924_list(40)) # G. C. Greubel, Jan 09 2025
    

Formula

G.f.: 1/Q(0) where Q(k) = 1 + x*k - x/(1 - 2*x*(k+1)/Q(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Mar 06 2013
E.g.f.: exp(2*exp(x) - x - 2). - Geoffrey Critzer, Mar 17 2013
G.f.: 1/Q(0), where Q(k) = 1 - (k+1)*x - 2*(k+1)*x^2/Q(k+1); (continued fraction). - Sergei N. Gladkovskii, May 03 2013
G.f.: T(0)/(1-x), where T(k) = 1 - 2*x^2*(k+1)/( 2*x^2*(k+1) - (1-x-x*k)*(1-2*x-x*k)/T(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Oct 19 2013
a(n) = Sum_{k=0..n} Sum_{j=0..k} binomial(n,k-j)*2^j*(-1)^(k-j)*Stirling2(n-k+j,j). - Vladimir Kruchinin, Feb 28 2015
a(n) = exp(-2) * Sum_{k>=0} 2^k * (k - 1)^n / k!. - Ilya Gutkovskiy, Jun 27 2020
Conjecture: a(n) = Sum_{k=0..2^n-1} A372205(k). - Mikhail Kurkov, Nov 21 2021 [Rewritten by Peter Luschny, Apr 22 2024]
a(n) ~ 2 * n^(n-1) * exp(n/LambertW(n/2) - n - 2) / (sqrt(1 + LambertW(n/2)) * LambertW(n/2)^(n-1)). - Vaclav Kotesovec, Jun 26 2022

Extensions

Name extended by a formula of Geoffrey Critzer by Peter Luschny, Apr 22 2024

A339014 E.g.f.: exp(2 * (exp(x) - 1 - x - x^2 / 2)).

Original entry on oeis.org

1, 0, 0, 2, 2, 2, 42, 142, 366, 3082, 18626, 86990, 596158, 4485626, 30214498, 224897662, 1871664190, 15587540042, 134045407458, 1231183979886, 11725017784574, 114812031304986, 1170100796863202, 12371771640238174, 134796972965052350, 1514854948728869354
Offset: 0

Views

Author

Ilya Gutkovskiy, Nov 19 2020

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 25; CoefficientList[Series[Exp[2 (Exp[x] - 1 - x - x^2/2)], {x, 0, nmax}], x] Range[0, nmax]!
    a[0] = 1; a[n_] := a[n] = 2 Sum[Binomial[n - 1, k - 1] a[n - k], {k, 3, n}]; Table[a[n], {n, 0, 25}]
  • PARI
    my(x='x+O('x^30)); Vec(serlaplace(exp(2 * (exp(x) - 1 - x - x^2/2)))) \\ Michel Marcus, Nov 19 2020

Formula

a(0) = 1; a(n) = 2 * Sum_{k=3..n} binomial(n-1,k-1) * a(n-k).
a(n) = Sum_{k=0..n} binomial(n,k) * A006505(k) * A006505(n-k).

A339017 E.g.f.: exp(2 * (exp(x) - 1 - x - x^2 / 2 - x^3 / 6)).

Original entry on oeis.org

1, 0, 0, 0, 2, 2, 2, 2, 142, 506, 1346, 3170, 53198, 375234, 1880738, 7919082, 72104190, 678488362, 5164781154, 33220643026, 271431061614, 2710340281426, 26278673924322, 228727591600826, 2081516848032222, 21560234032116154, 236863265302626722, 2521687569105476002
Offset: 0

Views

Author

Ilya Gutkovskiy, Nov 19 2020

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 27; CoefficientList[Series[Exp[2 (Exp[x] - 1 - x - x^2/2 - x^3/6)], {x, 0, nmax}], x] Range[0, nmax]!
    a[0] = 1; a[n_] := a[n] = 2 Sum[Binomial[n - 1, k - 1] a[n - k], {k, 4, n}]; Table[a[n], {n, 0, 27}]
  • PARI
    my(x='x+O('x^30)); Vec(serlaplace(exp(2*(exp(x) - 1 - x - x^2/2 - x^3/6)))) \\ Michel Marcus, Nov 19 2020

Formula

a(0) = 1; a(n) = 2 * Sum_{k=4..n} binomial(n-1,k-1) * a(n-k).
a(n) = Sum_{k=0..n} binomial(n,k) * A057837(k) * A057837(n-k).

A339027 E.g.f.: exp(2 * (exp(x) - 1 - x - x^2 / 2 - x^3 / 6 - x^4 / 24)).

Original entry on oeis.org

1, 0, 0, 0, 0, 2, 2, 2, 2, 2, 506, 1850, 5018, 12014, 26886, 1066782, 8193070, 42723722, 185108514, 719359762, 10426744914, 118490840686, 976376930502, 6583701431086, 38977418758494, 377188932759354, 4671829781287922, 51479602726372402, 483303800325691922
Offset: 0

Views

Author

Ilya Gutkovskiy, Nov 20 2020

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 28; CoefficientList[Series[Exp[2 (Exp[x] - 1 - x - x^2/2 - x^3/6 - x^4/24)], {x, 0, nmax}], x] Range[0, nmax]!
    a[0] = 1; a[n_] := a[n] = 2 Sum[Binomial[n - 1, k - 1] a[n - k], {k, 5, n}]; Table[a[n], {n, 0, 28}]
  • PARI
    my(x='x+O('x^30)); Vec(serlaplace(exp(2 * (exp(x) - 1 - x - x^2/2 - x^3/6 - x^4/24)))) \\ Michel Marcus, Nov 20 2020

Formula

a(0) = 1; a(n) = 2 * Sum_{k=5..n} binomial(n-1,k-1) * a(n-k).
a(n) = Sum_{k=0..n} binomial(n,k) * A057814(k) * A057814(n-k).

A355247 Expansion of e.g.f. exp(2*(exp(x) - 1 + x)).

Original entry on oeis.org

1, 4, 18, 90, 494, 2946, 18926, 130066, 950654, 7353794, 59954638, 513333618, 4601380766, 43062556322, 419742815726, 4252083713874, 44680229906622, 486145710591874, 5468499473222670, 63503107472489266, 760281866742088670, 9373065303624742498, 118858898763010225198
Offset: 0

Views

Author

Vaclav Kotesovec, Jun 25 2022

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 25; CoefficientList[Series[Exp[2*Exp[x]-2+2*x], {x, 0, nmax}], x] * Range[0, nmax]!
    Table[(BellB[n+2, 2] - BellB[n+1, 2])/4, {n, 0, 25}] (* Vaclav Kotesovec, Jul 21 2025 *)

Formula

a(n) ~ n^(n+2) * exp(n/LambertW(n/2) - n - 2) / (4 * sqrt(1 + LambertW(n/2)) * LambertW(n/2)^(n+2)).
a(n) = Sum_{k=0..n} binomial(n,k) * Bell(k+1) * Bell(n-k+1). - Ilya Gutkovskiy, Jun 26 2022

A355253 Expansion of e.g.f. exp(2*(exp(x) - 1) - 3*x).

Original entry on oeis.org

1, -1, 3, -5, 19, -29, 171, -69, 2339, 5139, 57563, 303403, 2397011, 17237507, 139011211, 1151110299, 10076637827, 91903924979, 874688607035, 8656097294091, 88932728790195, 946748093175523, 10426787247224043, 118620906668843131, 1392128306377939427, 16833088095308098003
Offset: 0

Views

Author

Vaclav Kotesovec, Jun 26 2022

Keywords

Comments

Inverse binomial transform of A194689.

Crossrefs

Programs

  • Mathematica
    nmax = 30; CoefficientList[Series[Exp[2*Exp[x]-2-3*x], {x, 0, nmax}], x] * Range[0, nmax]!
  • PARI
    my(x='x+O('x^30)); Vec(serlaplace(exp(2*(exp(x) - 1) - 3*x))) \\ Michel Marcus, Dec 04 2023

Formula

a(n) ~ 8 * n^(n-3) * exp(n/LambertW(n/2) - n - 2) / (sqrt(1 + LambertW(n/2)) * LambertW(n/2)^(n-3)).
a(0) = 1; a(n) = -3 * a(n-1) + 2 * Sum_{k=1..n} binomial(n-1,k-1) * a(n-k). - Ilya Gutkovskiy, Dec 04 2023

A367888 Expansion of e.g.f. exp(3*(exp(x) - 1) - 2*x).

Original entry on oeis.org

1, 1, 4, 13, 61, 304, 1747, 10945, 74830, 550687, 4335109, 36272086, 320980645, 2991373597, 29253607780, 299258487553, 3193634980753, 35469069928792, 409082335024591, 4890313138089133, 60489400453642822, 772967507343358171, 10189818916331129017, 138398721137005215526
Offset: 0

Views

Author

Ilya Gutkovskiy, Dec 04 2023

Keywords

Crossrefs

Programs

  • Maple
    b:= proc(n, k, m) option remember; `if`(n=0, 3^m, `if`(k>0,
          b(n-1, k-1, m+1)*k, 0)+m*b(n-1, k, m)+b(n-1, k+1, m))
        end:
    a:= n-> b(n, 0$2):
    seq(a(n), n=0..23);  # Alois P. Heinz, Apr 29 2025
  • Mathematica
    nmax = 23; CoefficientList[Series[Exp[3 (Exp[x] - 1) - 2 x], {x, 0, nmax}], x] Range[0, nmax]!
    a[0] = 1; a[n_] := a[n] = -2 a[n - 1] + 3 Sum[Binomial[n - 1, k - 1] a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 23}]
    Table[Sum[Binomial[n, k] (-2)^(n - k) BellB[k, 3], {k, 0, n}], {n, 0, 23}]
  • PARI
    my(x='x+O('x^30)); Vec(serlaplace(exp(3*(exp(x) - 1) - 2*x))) \\ Michel Marcus, Dec 04 2023

Formula

G.f. A(x) satisfies: A(x) = 1 - x * ( 2 * A(x) - 3 * A(x/(1 - x)) / (1 - x) ).
a(n) = exp(-3) * Sum_{k>=0} 3^k * (k-2)^n / k!.
a(0) = 1; a(n) = -2 * a(n-1) + 3 * Sum_{k=1..n} binomial(n-1,k-1) * a(n-k).
a(n) = Sum_{k=0..n} binomial(n,k) * (-2)^(n-k) * A027710(k).

A367891 Expansion of e.g.f. exp(4*(exp(x) - 1 - x)).

Original entry on oeis.org

1, 0, 4, 4, 52, 164, 1364, 7620, 60148, 449252, 3831700, 33811716, 320082228, 3178774564, 33234163668, 363535920196, 4153091085172, 49406896240996, 610777358429204, 7830140410294148, 103914148870277556, 1425254885630973604, 20173671034640405588
Offset: 0

Views

Author

Ilya Gutkovskiy, Dec 04 2023

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 22; CoefficientList[Series[Exp[4 (Exp[x] - 1 - x)], {x, 0, nmax}], x] Range[0, nmax]!
    a[0] = 1; a[n_] := a[n] = 4 Sum[Binomial[n - 1, k] a[n - k - 1], {k, 1, n - 1}]; Table[a[n], {n, 0, 22}]
    Table[Sum[Binomial[n, k] (-4)^(n - k) BellB[k, 4], {k, 0, n}], {n, 0, 22}]
  • PARI
    my(x='x+O('x^30)); Vec(serlaplace(exp(4*(exp(x) - 1 - x)))) \\ Michel Marcus, Dec 04 2023

Formula

G.f. A(x) satisfies: A(x) = 1 - 4 * x * ( A(x) - A(x/(1 - x)) / (1 - x) ).
a(n) = exp(-4) * Sum_{k>=0} 4^k * (k-4)^n / k!.
a(0) = 1; a(n) = 4 * Sum_{k=1..n-1} binomial(n-1,k) * a(n-k-1).
a(n) = Sum_{k=0..n} binomial(n,k) * (-4)^(n-k) * A078944(k).

A367890 Expansion of e.g.f. exp(3*(exp(x) - 1 - x)).

Original entry on oeis.org

1, 0, 3, 3, 30, 93, 633, 3342, 22809, 156063, 1183872, 9453711, 80455125, 721576560, 6809391111, 67332650007, 695777512638, 7493572404345, 83926492573341, 975467527353750, 11744536832206149, 146234590864310019, 1880198749437144456, 24928860500681953683
Offset: 0

Views

Author

Ilya Gutkovskiy, Dec 04 2023

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 23; CoefficientList[Series[Exp[3 (Exp[x] - 1 - x)], {x, 0, nmax}], x] Range[0, nmax]!
    a[0] = 1; a[n_] := a[n] = 3 Sum[Binomial[n - 1, k] a[n - k - 1], {k, 1, n - 1}]; Table[a[n], {n, 0, 23}]
    Table[Sum[Binomial[n, k] (-3)^(n - k) BellB[k, 3], {k, 0, n}], {n, 0, 23}]
  • PARI
    my(x='x+O('x^30)); Vec(serlaplace(exp(3*(exp(x) - 1 - x)))) \\ Michel Marcus, Dec 04 2023

Formula

G.f. A(x) satisfies: A(x) = 1 - 3 * x * ( A(x) - A(x/(1 - x)) / (1 - x) ).
a(n) = exp(-3) * Sum_{k>=0} 3^k * (k-3)^n / k!.
a(0) = 1; a(n) = 3 * Sum_{k=1..n-1} binomial(n-1,k) * a(n-k-1).
a(n) = Sum_{k=0..n} binomial(n,k) * (-3)^(n-k) * A027710(k).

A367920 Expansion of e.g.f. exp(4*(exp(x) - 1) - 2*x).

Original entry on oeis.org

1, 2, 8, 36, 196, 1196, 8116, 60108, 481140, 4126540, 37671540, 364068172, 3707910772, 39645022540, 443540780660, 5177560304972, 62903920321140, 793654042136908, 10378403752717940, 140413475790402892, 1962339063781284468, 28287778534523140428, 420059992540347885172
Offset: 0

Views

Author

Ilya Gutkovskiy, Dec 04 2023

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 22; CoefficientList[Series[Exp[4 (Exp[x] - 1) - 2 x], {x, 0, nmax}], x] Range[0, nmax]!
    a[0] = 1; a[n_] := a[n] = -2 a[n - 1] + 4 Sum[Binomial[n - 1, k - 1] a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 22}]

Formula

G.f. A(x) satisfies: A(x) = 1 - 2 * x * ( A(x) - 2 * A(x/(1 - x)) / (1 - x) ).
a(n) = exp(-4) * Sum_{k>=0} 4^k * (k-2)^n / k!.
a(0) = 1; a(n) = -2 * a(n-1) + 4 * Sum_{k=1..n} binomial(n-1,k-1) * a(n-k).
Showing 1-10 of 13 results. Next