A217924
a(n) = n! * [x^n] exp(2*exp(x) - x - 2). Row sums of triangle A217537.
Original entry on oeis.org
1, 1, 3, 9, 35, 153, 755, 4105, 24323, 155513, 1064851, 7760745, 59895203, 487397849, 4166564147, 37298443977, 348667014723, 3395240969785, 34365336725715, 360837080222761, 3923531021460707, 44108832866004121, 511948390801374835, 6126363766802713481
Offset: 0
a(3)=9 because we have: {1,2,3}; {1,3,2}; {1}{2,3}; {1}{3,2}; {2}{1,3}; {2}{3,1}; {3}{1,2}; {3}{2,1}; {1}{2}{3}. - _Geoffrey Critzer_, Mar 17 2013
-
R:=PowerSeriesRing(Rationals(), 30);
Coefficients(R!(Laplace( Exp(2*Exp(x) -x-2) ))); // G. C. Greubel, Jan 09 2025
-
egf := exp(2*exp(x) - x - 2): ser := series(egf, x, 25):
seq(n!*coeff(ser, x, n), n = 0..23); # Peter Luschny, Apr 22 2024
-
nn=23;Range[0,nn]!CoefficientList[Series[Exp[2 Exp[x]-x-2],{x,0,nn}],x] (* Geoffrey Critzer, Mar 17 2013 *)
nmax = 25; CoefficientList[Series[1/(1 - x + ContinuedFractionK[-2*k*x^2 , 1 - (k + 1)*x, {k, 1, nmax}]), {x, 0, nmax}], x] (* Vaclav Kotesovec, Sep 25 2017 *)
-
a(n):=sum(sum(binomial(n,k-j)*2^j*(-1)^(k-j)*stirling2(n-k+j,j),j,0,k),k,0,n); /* Vladimir Kruchinin, Feb 28 2015 */
-
def A217924_list(n):
T = A217537_triangle(n)
return [add(T.row(n)) for n in range(n)]
A217924_list(24)
-
def A217924_list(prec):
P. = PowerSeriesRing(QQ, prec)
return P( exp(2*exp(x)-x-2) ).egf_to_ogf().list()
print(A217924_list(40)) # G. C. Greubel, Jan 09 2025
A339014
E.g.f.: exp(2 * (exp(x) - 1 - x - x^2 / 2)).
Original entry on oeis.org
1, 0, 0, 2, 2, 2, 42, 142, 366, 3082, 18626, 86990, 596158, 4485626, 30214498, 224897662, 1871664190, 15587540042, 134045407458, 1231183979886, 11725017784574, 114812031304986, 1170100796863202, 12371771640238174, 134796972965052350, 1514854948728869354
Offset: 0
-
nmax = 25; CoefficientList[Series[Exp[2 (Exp[x] - 1 - x - x^2/2)], {x, 0, nmax}], x] Range[0, nmax]!
a[0] = 1; a[n_] := a[n] = 2 Sum[Binomial[n - 1, k - 1] a[n - k], {k, 3, n}]; Table[a[n], {n, 0, 25}]
-
my(x='x+O('x^30)); Vec(serlaplace(exp(2 * (exp(x) - 1 - x - x^2/2)))) \\ Michel Marcus, Nov 19 2020
A339017
E.g.f.: exp(2 * (exp(x) - 1 - x - x^2 / 2 - x^3 / 6)).
Original entry on oeis.org
1, 0, 0, 0, 2, 2, 2, 2, 142, 506, 1346, 3170, 53198, 375234, 1880738, 7919082, 72104190, 678488362, 5164781154, 33220643026, 271431061614, 2710340281426, 26278673924322, 228727591600826, 2081516848032222, 21560234032116154, 236863265302626722, 2521687569105476002
Offset: 0
-
nmax = 27; CoefficientList[Series[Exp[2 (Exp[x] - 1 - x - x^2/2 - x^3/6)], {x, 0, nmax}], x] Range[0, nmax]!
a[0] = 1; a[n_] := a[n] = 2 Sum[Binomial[n - 1, k - 1] a[n - k], {k, 4, n}]; Table[a[n], {n, 0, 27}]
-
my(x='x+O('x^30)); Vec(serlaplace(exp(2*(exp(x) - 1 - x - x^2/2 - x^3/6)))) \\ Michel Marcus, Nov 19 2020
A339027
E.g.f.: exp(2 * (exp(x) - 1 - x - x^2 / 2 - x^3 / 6 - x^4 / 24)).
Original entry on oeis.org
1, 0, 0, 0, 0, 2, 2, 2, 2, 2, 506, 1850, 5018, 12014, 26886, 1066782, 8193070, 42723722, 185108514, 719359762, 10426744914, 118490840686, 976376930502, 6583701431086, 38977418758494, 377188932759354, 4671829781287922, 51479602726372402, 483303800325691922
Offset: 0
-
nmax = 28; CoefficientList[Series[Exp[2 (Exp[x] - 1 - x - x^2/2 - x^3/6 - x^4/24)], {x, 0, nmax}], x] Range[0, nmax]!
a[0] = 1; a[n_] := a[n] = 2 Sum[Binomial[n - 1, k - 1] a[n - k], {k, 5, n}]; Table[a[n], {n, 0, 28}]
-
my(x='x+O('x^30)); Vec(serlaplace(exp(2 * (exp(x) - 1 - x - x^2/2 - x^3/6 - x^4/24)))) \\ Michel Marcus, Nov 20 2020
A355247
Expansion of e.g.f. exp(2*(exp(x) - 1 + x)).
Original entry on oeis.org
1, 4, 18, 90, 494, 2946, 18926, 130066, 950654, 7353794, 59954638, 513333618, 4601380766, 43062556322, 419742815726, 4252083713874, 44680229906622, 486145710591874, 5468499473222670, 63503107472489266, 760281866742088670, 9373065303624742498, 118858898763010225198
Offset: 0
-
nmax = 25; CoefficientList[Series[Exp[2*Exp[x]-2+2*x], {x, 0, nmax}], x] * Range[0, nmax]!
Table[(BellB[n+2, 2] - BellB[n+1, 2])/4, {n, 0, 25}] (* Vaclav Kotesovec, Jul 21 2025 *)
A355253
Expansion of e.g.f. exp(2*(exp(x) - 1) - 3*x).
Original entry on oeis.org
1, -1, 3, -5, 19, -29, 171, -69, 2339, 5139, 57563, 303403, 2397011, 17237507, 139011211, 1151110299, 10076637827, 91903924979, 874688607035, 8656097294091, 88932728790195, 946748093175523, 10426787247224043, 118620906668843131, 1392128306377939427, 16833088095308098003
Offset: 0
-
nmax = 30; CoefficientList[Series[Exp[2*Exp[x]-2-3*x], {x, 0, nmax}], x] * Range[0, nmax]!
-
my(x='x+O('x^30)); Vec(serlaplace(exp(2*(exp(x) - 1) - 3*x))) \\ Michel Marcus, Dec 04 2023
A367888
Expansion of e.g.f. exp(3*(exp(x) - 1) - 2*x).
Original entry on oeis.org
1, 1, 4, 13, 61, 304, 1747, 10945, 74830, 550687, 4335109, 36272086, 320980645, 2991373597, 29253607780, 299258487553, 3193634980753, 35469069928792, 409082335024591, 4890313138089133, 60489400453642822, 772967507343358171, 10189818916331129017, 138398721137005215526
Offset: 0
-
b:= proc(n, k, m) option remember; `if`(n=0, 3^m, `if`(k>0,
b(n-1, k-1, m+1)*k, 0)+m*b(n-1, k, m)+b(n-1, k+1, m))
end:
a:= n-> b(n, 0$2):
seq(a(n), n=0..23); # Alois P. Heinz, Apr 29 2025
-
nmax = 23; CoefficientList[Series[Exp[3 (Exp[x] - 1) - 2 x], {x, 0, nmax}], x] Range[0, nmax]!
a[0] = 1; a[n_] := a[n] = -2 a[n - 1] + 3 Sum[Binomial[n - 1, k - 1] a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 23}]
Table[Sum[Binomial[n, k] (-2)^(n - k) BellB[k, 3], {k, 0, n}], {n, 0, 23}]
-
my(x='x+O('x^30)); Vec(serlaplace(exp(3*(exp(x) - 1) - 2*x))) \\ Michel Marcus, Dec 04 2023
A367891
Expansion of e.g.f. exp(4*(exp(x) - 1 - x)).
Original entry on oeis.org
1, 0, 4, 4, 52, 164, 1364, 7620, 60148, 449252, 3831700, 33811716, 320082228, 3178774564, 33234163668, 363535920196, 4153091085172, 49406896240996, 610777358429204, 7830140410294148, 103914148870277556, 1425254885630973604, 20173671034640405588
Offset: 0
-
nmax = 22; CoefficientList[Series[Exp[4 (Exp[x] - 1 - x)], {x, 0, nmax}], x] Range[0, nmax]!
a[0] = 1; a[n_] := a[n] = 4 Sum[Binomial[n - 1, k] a[n - k - 1], {k, 1, n - 1}]; Table[a[n], {n, 0, 22}]
Table[Sum[Binomial[n, k] (-4)^(n - k) BellB[k, 4], {k, 0, n}], {n, 0, 22}]
-
my(x='x+O('x^30)); Vec(serlaplace(exp(4*(exp(x) - 1 - x)))) \\ Michel Marcus, Dec 04 2023
A367890
Expansion of e.g.f. exp(3*(exp(x) - 1 - x)).
Original entry on oeis.org
1, 0, 3, 3, 30, 93, 633, 3342, 22809, 156063, 1183872, 9453711, 80455125, 721576560, 6809391111, 67332650007, 695777512638, 7493572404345, 83926492573341, 975467527353750, 11744536832206149, 146234590864310019, 1880198749437144456, 24928860500681953683
Offset: 0
-
nmax = 23; CoefficientList[Series[Exp[3 (Exp[x] - 1 - x)], {x, 0, nmax}], x] Range[0, nmax]!
a[0] = 1; a[n_] := a[n] = 3 Sum[Binomial[n - 1, k] a[n - k - 1], {k, 1, n - 1}]; Table[a[n], {n, 0, 23}]
Table[Sum[Binomial[n, k] (-3)^(n - k) BellB[k, 3], {k, 0, n}], {n, 0, 23}]
-
my(x='x+O('x^30)); Vec(serlaplace(exp(3*(exp(x) - 1 - x)))) \\ Michel Marcus, Dec 04 2023
A367920
Expansion of e.g.f. exp(4*(exp(x) - 1) - 2*x).
Original entry on oeis.org
1, 2, 8, 36, 196, 1196, 8116, 60108, 481140, 4126540, 37671540, 364068172, 3707910772, 39645022540, 443540780660, 5177560304972, 62903920321140, 793654042136908, 10378403752717940, 140413475790402892, 1962339063781284468, 28287778534523140428, 420059992540347885172
Offset: 0
-
nmax = 22; CoefficientList[Series[Exp[4 (Exp[x] - 1) - 2 x], {x, 0, nmax}], x] Range[0, nmax]!
a[0] = 1; a[n_] := a[n] = -2 a[n - 1] + 4 Sum[Binomial[n - 1, k - 1] a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 22}]
Showing 1-10 of 13 results.
Comments