cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A367889 Expansion of e.g.f. exp(3*(exp(x) - 1) + 2*x).

Original entry on oeis.org

1, 5, 28, 173, 1165, 8468, 65923, 546197, 4791214, 44301143, 430158397, 4372004546, 46381674085, 512328076385, 5879362011436, 69958289731457, 861605015493073, 10965899141265500, 144018319806024991, 1949190279770578145, 27153595018237222774
Offset: 0

Views

Author

Ilya Gutkovskiy, Dec 04 2023

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 20; CoefficientList[Series[Exp[3 (Exp[x] - 1) + 2 x], {x, 0, nmax}], x] Range[0, nmax]!
    a[0] = 1; a[n_] := a[n] = 2 a[n - 1] + 3 Sum[Binomial[n - 1, k - 1] a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 20}]
    Table[Sum[Binomial[n, k] 2^(n - k) BellB[k, 3], {k, 0, n}], {n, 0, 20}]
  • PARI
    my(x='x+O('x^30)); Vec(serlaplace(exp(3*(exp(x) - 1) + 2*x))) \\ Michel Marcus, Dec 04 2023

Formula

G.f. A(x) satisfies: A(x) = 1 + x * ( 2 * A(x) + 3 * A(x/(1 - x)) / (1 - x) ).
a(n) = exp(-3) * Sum_{k>=0} 3^k * (k+2)^n / k!.
a(0) = 1; a(n) = 2 * a(n-1) + 3 * Sum_{k=1..n} binomial(n-1,k-1) * a(n-k).
a(n) = Sum_{k=0..n} binomial(n,k) * 2^(n-k) * A027710(k).

A367890 Expansion of e.g.f. exp(3*(exp(x) - 1 - x)).

Original entry on oeis.org

1, 0, 3, 3, 30, 93, 633, 3342, 22809, 156063, 1183872, 9453711, 80455125, 721576560, 6809391111, 67332650007, 695777512638, 7493572404345, 83926492573341, 975467527353750, 11744536832206149, 146234590864310019, 1880198749437144456, 24928860500681953683
Offset: 0

Views

Author

Ilya Gutkovskiy, Dec 04 2023

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 23; CoefficientList[Series[Exp[3 (Exp[x] - 1 - x)], {x, 0, nmax}], x] Range[0, nmax]!
    a[0] = 1; a[n_] := a[n] = 3 Sum[Binomial[n - 1, k] a[n - k - 1], {k, 1, n - 1}]; Table[a[n], {n, 0, 23}]
    Table[Sum[Binomial[n, k] (-3)^(n - k) BellB[k, 3], {k, 0, n}], {n, 0, 23}]
  • PARI
    my(x='x+O('x^30)); Vec(serlaplace(exp(3*(exp(x) - 1 - x)))) \\ Michel Marcus, Dec 04 2023

Formula

G.f. A(x) satisfies: A(x) = 1 - 3 * x * ( A(x) - A(x/(1 - x)) / (1 - x) ).
a(n) = exp(-3) * Sum_{k>=0} 3^k * (k-3)^n / k!.
a(0) = 1; a(n) = 3 * Sum_{k=1..n-1} binomial(n-1,k) * a(n-k-1).
a(n) = Sum_{k=0..n} binomial(n,k) * (-3)^(n-k) * A027710(k).

A367920 Expansion of e.g.f. exp(4*(exp(x) - 1) - 2*x).

Original entry on oeis.org

1, 2, 8, 36, 196, 1196, 8116, 60108, 481140, 4126540, 37671540, 364068172, 3707910772, 39645022540, 443540780660, 5177560304972, 62903920321140, 793654042136908, 10378403752717940, 140413475790402892, 1962339063781284468, 28287778534523140428, 420059992540347885172
Offset: 0

Views

Author

Ilya Gutkovskiy, Dec 04 2023

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 22; CoefficientList[Series[Exp[4 (Exp[x] - 1) - 2 x], {x, 0, nmax}], x] Range[0, nmax]!
    a[0] = 1; a[n_] := a[n] = -2 a[n - 1] + 4 Sum[Binomial[n - 1, k - 1] a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 22}]

Formula

G.f. A(x) satisfies: A(x) = 1 - 2 * x * ( A(x) - 2 * A(x/(1 - x)) / (1 - x) ).
a(n) = exp(-4) * Sum_{k>=0} 4^k * (k-2)^n / k!.
a(0) = 1; a(n) = -2 * a(n-1) + 4 * Sum_{k=1..n} binomial(n-1,k-1) * a(n-k).

A367938 Expansion of e.g.f. exp(exp(3*x) - 1 - 2*x).

Original entry on oeis.org

1, 1, 10, 55, 487, 4654, 51463, 632125, 8536492, 125279785, 1981246555, 33530245984, 603797462677, 11513675558701, 231539488842610, 4893151984630579, 108334206855000739, 2505977899186557502, 60419653270442268643, 1515077412621445514089, 39437350309301393464876, 1063746973172416765272589
Offset: 0

Views

Author

Ilya Gutkovskiy, Dec 05 2023

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 21; CoefficientList[Series[Exp[Exp[3 x] - 1 - 2 x], {x, 0, nmax}], x] Range[0, nmax]!
    a[0] = 1; a[n_] := a[n] = -2 a[n - 1] + Sum[Binomial[n - 1, k - 1] 3^k a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 21}]
    Table[Sum[Binomial[n, k] (-2)^(n - k) 3^k BellB[k], {k, 0, n}], {n, 0, 21}]
  • PARI
    my(x='x+O('x^30)); Vec(serlaplace(exp(exp(3*x) - 1 - 2*x))) \\ Michel Marcus, Dec 07 2023

Formula

G.f. A(x) satisfies: A(x) = 1 - x * ( 2 * A(x) - 3 * A(x/(1 - 3*x)) / (1 - 3*x) ).
a(n) = exp(-1) * Sum_{k>=0} (3*k-2)^n / k!.
a(0) = 1; a(n) = -2 * a(n-1) + Sum_{k=1..n} binomial(n-1,k-1) * 3^k * a(n-k).
a(n) = Sum_{k=0..n} binomial(n,k) * (-2)^(n-k) * 3^k * Bell(k).
Showing 1-4 of 4 results.