cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A367888 Expansion of e.g.f. exp(3*(exp(x) - 1) - 2*x).

Original entry on oeis.org

1, 1, 4, 13, 61, 304, 1747, 10945, 74830, 550687, 4335109, 36272086, 320980645, 2991373597, 29253607780, 299258487553, 3193634980753, 35469069928792, 409082335024591, 4890313138089133, 60489400453642822, 772967507343358171, 10189818916331129017, 138398721137005215526
Offset: 0

Views

Author

Ilya Gutkovskiy, Dec 04 2023

Keywords

Crossrefs

Programs

  • Maple
    b:= proc(n, k, m) option remember; `if`(n=0, 3^m, `if`(k>0,
          b(n-1, k-1, m+1)*k, 0)+m*b(n-1, k, m)+b(n-1, k+1, m))
        end:
    a:= n-> b(n, 0$2):
    seq(a(n), n=0..23);  # Alois P. Heinz, Apr 29 2025
  • Mathematica
    nmax = 23; CoefficientList[Series[Exp[3 (Exp[x] - 1) - 2 x], {x, 0, nmax}], x] Range[0, nmax]!
    a[0] = 1; a[n_] := a[n] = -2 a[n - 1] + 3 Sum[Binomial[n - 1, k - 1] a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 23}]
    Table[Sum[Binomial[n, k] (-2)^(n - k) BellB[k, 3], {k, 0, n}], {n, 0, 23}]
  • PARI
    my(x='x+O('x^30)); Vec(serlaplace(exp(3*(exp(x) - 1) - 2*x))) \\ Michel Marcus, Dec 04 2023

Formula

G.f. A(x) satisfies: A(x) = 1 - x * ( 2 * A(x) - 3 * A(x/(1 - x)) / (1 - x) ).
a(n) = exp(-3) * Sum_{k>=0} 3^k * (k-2)^n / k!.
a(0) = 1; a(n) = -2 * a(n-1) + 3 * Sum_{k=1..n} binomial(n-1,k-1) * a(n-k).
a(n) = Sum_{k=0..n} binomial(n,k) * (-2)^(n-k) * A027710(k).

A366199 Expansion of e.g.f. exp(4*(exp(x) - 1) + 2*x).

Original entry on oeis.org

1, 6, 40, 292, 2308, 19580, 177044, 1696572, 17148916, 182114972, 2024979604, 23506175868, 284125820724, 3567957972316, 46454893734612, 625979771144764, 8715626185644916, 125200337417147932, 1853095248414187796, 28225529312569364732, 441925530173009732532
Offset: 0

Views

Author

Ilya Gutkovskiy, Dec 05 2023

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 20; CoefficientList[Series[Exp[4 (Exp[x] - 1) + 2 x], {x, 0, nmax}], x] Range[0, nmax]!
    a[0] = 1; a[n_] := a[n] = 2 a[n - 1] + 4 Sum[Binomial[n - 1, k - 1] a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 20}]
  • PARI
    my(x='x+O('x^30)); Vec(serlaplace(exp(4*(exp(x) - 1) + 2*x))) \\ Michel Marcus, Dec 07 2023

Formula

G.f. A(x) satisfies: A(x) = 1 + 2 * x * ( A(x) + 2 * A(x/(1 - x)) / (1 - x) ).
a(n) = exp(-4) * Sum_{k>=0} 4^k * (k+2)^n / k!.
a(0) = 1; a(n) = 2 * a(n-1) + 4 * Sum_{k=1..n} binomial(n-1,k-1) * a(n-k).

A367937 Expansion of e.g.f. exp(4*(exp(x) - 1) + 3*x).

Original entry on oeis.org

1, 7, 53, 431, 3741, 34471, 335621, 3438943, 36954285, 415187415, 4864054165, 59278367247, 749926582717, 9829744447495, 133267495918885, 1865916660838847, 26942271261464525, 400673643394972983, 6129834703935247285, 96368617886967750767, 1555302323744129219293
Offset: 0

Views

Author

Ilya Gutkovskiy, Dec 05 2023

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 20; CoefficientList[Series[Exp[4 (Exp[x] - 1) + 3 x], {x, 0, nmax}], x] Range[0, nmax]!
    a[0] = 1; a[n_] := a[n] = 3 a[n - 1] + 4 Sum[Binomial[n - 1, k - 1] a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 20}]
  • PARI
    my(x='x+O('x^30)); Vec(serlaplace(exp(4*(exp(x) - 1) + 3*x))) \\ Michel Marcus, Dec 07 2023

Formula

G.f. A(x) satisfies: A(x) = 1 + x * ( 3 * A(x) + 4 * A(x/(1 - x)) / (1 - x) ).
a(n) = exp(-4) * Sum_{k>=0} 4^k * (k+3)^n / k!.
a(0) = 1; a(n) = 3 * a(n-1) + 4 * Sum_{k=1..n} binomial(n-1,k-1) * a(n-k).
Showing 1-3 of 3 results.