cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A343319 Number of ways to partition n labeled elements into sets of different sizes of at least 4.

Original entry on oeis.org

1, 0, 0, 0, 1, 1, 1, 1, 1, 127, 211, 793, 1288, 3719, 6007, 646439, 1467077, 7211843, 30123763, 91160937, 293184840, 1118980377, 110635063749, 319072758997, 1918239941962, 9518126978941, 58119248603131, 202992067559011, 1031021295578251, 4151156602678042, 650225250329137612
Offset: 0

Views

Author

Ilya Gutkovskiy, Apr 28 2021

Keywords

Crossrefs

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0, 1,
         `if`(i>n, 0, b(n, i+1)+b(n-i, i+1)*binomial(n, i)))
        end:
    a:= n-> b(n, 4):
    seq(a(n), n=0..30);  # Alois P. Heinz, Apr 28 2021
  • Mathematica
    nmax = 30; CoefficientList[Series[Product[(1 + x^k/k!), {k, 4, nmax}], {x, 0, nmax}], x] Range[0, nmax]!
    a[0] = 1; a[n_] := a[n] = -(n - 1)! Sum[DivisorSum[k, # (-#!)^(-k/#) &, # > 3 &] a[n - k]/(n - k)!, {k, 1, n}]; Table[a[n], {n, 0, 30}]

Formula

E.g.f.: Product_{k>=4} (1 + x^k/k!).

A343542 Number of ways to partition n labeled elements into sets of different sizes of at least 5.

Original entry on oeis.org

1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 463, 793, 3004, 5006, 14444, 23817, 62323, 14805403, 35175993, 177791475, 745977222, 2333540804, 7589340982, 29027728612, 81515120641, 23232813583331, 69799133324911, 436678552247551, 2215090972333651, 13529994077951557, 48863594588239153
Offset: 0

Views

Author

Ilya Gutkovskiy, Apr 28 2021

Keywords

Crossrefs

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0, 1,
         `if`(i>n, 0, b(n, i+1)+binomial(n, i)*b(n-i, i+1)))
        end:
    a:= n-> b(n, 5):
    seq(a(n), n=0..31);  # Alois P. Heinz, Apr 28 2021
  • Mathematica
    nmax = 31; CoefficientList[Series[Product[(1 + x^k/k!), {k, 5, nmax}], {x, 0, nmax}], x] Range[0, nmax]!
    a[0] = 1; a[n_] := a[n] = -(n - 1)! Sum[DivisorSum[k, # (-#!)^(-k/#) &, # > 4 &] a[n - k]/(n - k)!, {k, 1, n}]; Table[a[n], {n, 0, 31}]

Formula

E.g.f.: Product_{k>=5} (1 + x^k/k!).
Showing 1-2 of 2 results.