A343319 Number of ways to partition n labeled elements into sets of different sizes of at least 4.
1, 0, 0, 0, 1, 1, 1, 1, 1, 127, 211, 793, 1288, 3719, 6007, 646439, 1467077, 7211843, 30123763, 91160937, 293184840, 1118980377, 110635063749, 319072758997, 1918239941962, 9518126978941, 58119248603131, 202992067559011, 1031021295578251, 4151156602678042, 650225250329137612
Offset: 0
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..700
Programs
-
Maple
b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i>n, 0, b(n, i+1)+b(n-i, i+1)*binomial(n, i))) end: a:= n-> b(n, 4): seq(a(n), n=0..30); # Alois P. Heinz, Apr 28 2021
-
Mathematica
nmax = 30; CoefficientList[Series[Product[(1 + x^k/k!), {k, 4, nmax}], {x, 0, nmax}], x] Range[0, nmax]! a[0] = 1; a[n_] := a[n] = -(n - 1)! Sum[DivisorSum[k, # (-#!)^(-k/#) &, # > 3 &] a[n - k]/(n - k)!, {k, 1, n}]; Table[a[n], {n, 0, 30}]
Formula
E.g.f.: Product_{k>=4} (1 + x^k/k!).