A341283 Number of ways to partition n labeled elements into sets of different sizes of at least 3.
1, 0, 0, 1, 1, 1, 1, 36, 57, 211, 331, 958, 29228, 64065, 294659, 1232479, 3549717, 11296603, 557617987, 1512758550, 8514685860, 41183585167, 251022906729, 838303110637, 4183056225010, 263978773601641, 887708421995331, 5813843897797861, 32212405278588967, 216518890998518716
Offset: 0
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..699
Programs
-
Maple
b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i>n, 0, b(n, i+1)+b(n-i, i+1)*binomial(n, i))) end: a:= n-> b(n, 3): seq(a(n), n=0..30); # Alois P. Heinz, Apr 28 2021
-
Mathematica
nmax = 29; CoefficientList[Series[Product[(1 + x^k/k!), {k, 3, nmax}], {x, 0, nmax}], x] Range[0, nmax]! a[0] = 1; a[n_] := a[n] = -(n - 1)! Sum[DivisorSum[k, # (-#!)^(-k/#) &, # > 2 &] a[n - k]/(n - k)!, {k, 1, n}]; Table[a[n], {n, 0, 29}]
Formula
E.g.f.: Product_{k>=3} (1 + x^k/k!).