A059027 Number of Dyck paths of semilength n with no peak at height 4.
1, 1, 2, 5, 13, 35, 97, 276, 805, 2404, 7343, 22916, 72980, 236857, 782275, 2625265, 8938718, 30834165, 107608097, 379454447, 1350434278, 4845475311, 17512579630, 63703732426, 233063976059, 857067469749, 3166309373615, 11745982220846
Offset: 0
Keywords
Examples
1 + x + 2*x^2 + 5*x^3 + 13*x^4 + 35*x^5 + 97*x^6 + ...
References
- Peart and Woan, in press, G_4(x).
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- P. Peart and W.-J. Woan, Dyck Paths With No Peaks at Height k, J. Integer Sequences, 4 (2001), #01.1.3.
Programs
-
Mathematica
CoefficientList[Series[(2 - 3 x + x (1 - 4 x)^(1/2))/(2 - 5 x + x (1 - 4 x)^(1/2)), {x, 0, 40}], x] (* Vincenzo Librandi, Oct 05 2013 *)
-
PARI
x='x+O('x^66); Vec((2-3*x+x*(1-4*x)^(1/2))/(2-5*x+x*(1-4*x)^(1/2))) \\ Joerg Arndt, Oct 03 2013
Formula
G.f.: (2-3*x+x*(1-4*x)^(1/2))/(2-5*x+x*(1-4*x)^(1/2)).
a(n) = sum(k=1..n-2, sum(j=max(2*k-n+1,0)..k-1, (binomial(k,j)*((k-j)*binomial(2*n-3*k+j-3,n-1-2*k+j)))/(n-k-1)*2^j))+2^(n-1). - Vladimir Kruchinin, Oct 03 2013
a(n) ~ 4^n/(9*sqrt(Pi)*n^(3/2)) * (1+197/(24*n)). - Vaclav Kotesovec, Mar 20 2014