A059056 Penrice Christmas gift numbers, Card-matching numbers (Dinner-Diner matching numbers): Triangle T(n,k) = number of ways to get k matches for a deck with n cards, 2 of each kind.
1, 0, 0, 1, 1, 0, 4, 0, 1, 10, 24, 27, 16, 12, 0, 1, 297, 672, 736, 480, 246, 64, 24, 0, 1, 13756, 30480, 32365, 21760, 10300, 3568, 970, 160, 40, 0, 1, 925705, 2016480, 2116836, 1418720, 677655, 243360, 67920, 14688, 2655, 320, 60, 0, 1
Offset: 0
Examples
There are 4 ways of matching exactly 2 cards when there are 2 different kinds of cards, 2 of each in each of the two decks so T(2,2)=4. Triangle begins: 1 "0", 0, 1 1, '0', "4", 0, 1 10, 24, 27, '16', "12", 0, 1 297, 672, 736, 480, 246, '64', "24", 0, 1 13756, 30480, 32365, 21760, 10300, 3568, 970, '160', "40", 0, 1 925705, 2016480, 2116836, 1418720, 677655, 243360, 67920, 14688, 2655, '320', "60", 0, 1 Diagonal " ": T(n,2n-2) = 0, 4, 12, 24, 40, 60, 84, 112, 144, ... equals A046092 Diagonal ' ': T(n,2n-3) = 0, 16, 64, 160, 320, 560, 896, 1344, ... equals A102860
References
- F. N. David and D. E. Barton, Combinatorial Chance, Hafner, NY, 1962, Ch. 7 and Ch. 12.
- J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, pp. 174-178.
- R. P. Stanley, Enumerative Combinatorics Volume I, Cambridge University Press, 1997, p. 71.
Links
- F. F. Knudsen and I. Skau, On the Asymptotic Solution of a Card-Matching Problem, Mathematics Magazine 69 (1996), 190-197.
- Barbara H. Margolius, Dinner-Diner Matching Probabilities
- B. H. Margolius, The Dinner-Diner Matching Problem, Mathematics Magazine, 76 (2003), 107-118.
- S. G. Penrice, Derangements, permanents and Christmas presents, The American Mathematical Monthly 98(1991), 617-620.
- Index entries for sequences related to card matching
Programs
-
Maple
p := (x,k)->k!^2*sum(x^j/((k-j)!^2*j!),j=0..k); R := (x,n,k)->p(x,k)^n; f := (t,n,k)->sum(coeff(R(x,n,k),x,j)*(t-1)^j*(n*k-j)!,j=0..n*k); for n from 0 to 7 do seq(coeff(f(t,n,2),t,m)/2^n,m=0..2*n); od;
-
Mathematica
p[x_, k_] := k!^2*Sum[ x^j/((k-j)!^2*j!), {j, 0, k}]; R[x_, n_, k_] := p[x, k]^n; f[t_, n_, k_] := Sum[ Coefficient[ R[x, n, k], x, j]*(t-1)^j*(n*k-j)!, {j, 0, n*k}]; Table[ Coefficient[ f[t, n, 2]/2^n, t, m], {n, 0, 6}, {m, 0, 2*n}] // Flatten (* Jean-François Alcover, Sep 17 2012, translated from Maple *)
Formula
G.f.: sum(coeff(R(x, n, k), x, j)*(t-1)^j*(n*k-j)!, j=0..n*k) where n is the number of kinds of cards, k is the number of cards of each kind (here k is 2) and R(x, n, k) is the rook polynomial given by R(x, n, k)=(k!^2*sum(x^j/((k-j)!^2*j!))^n (see Stanley or Riordan). coeff(R(x, n, k), x, j) indicates the j-th coefficient on x of the rook polynomial.
Extensions
Additional comments from Zerinvary Lajos, Jun 18 2007
Edited by M. F. Hasler, Sep 21 2015
Comments