cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A059056 Penrice Christmas gift numbers, Card-matching numbers (Dinner-Diner matching numbers): Triangle T(n,k) = number of ways to get k matches for a deck with n cards, 2 of each kind.

Original entry on oeis.org

1, 0, 0, 1, 1, 0, 4, 0, 1, 10, 24, 27, 16, 12, 0, 1, 297, 672, 736, 480, 246, 64, 24, 0, 1, 13756, 30480, 32365, 21760, 10300, 3568, 970, 160, 40, 0, 1, 925705, 2016480, 2116836, 1418720, 677655, 243360, 67920, 14688, 2655, 320, 60, 0, 1
Offset: 0

Views

Author

Barbara Haas Margolius (margolius(AT)math.csuohio.edu)

Keywords

Comments

This is a triangle of card matching numbers. A deck has n kinds of cards, 2 of each kind. The deck is shuffled and dealt in to n hands with 2 cards each. A match occurs for every card in the j-th hand of kind j. Triangle T(n,k) is the number of ways of achieving exactly k matches (k=0..2n). The probability of exactly k matches is T(n,k)/((2n)!/2^n).
Rows are of length 1,3,5,7,... = A005408(n). [Edited by M. F. Hasler, Sep 21 2015]
Analogous to A008290. - Zerinvary Lajos, Jun 10 2005

Examples

			There are 4 ways of matching exactly 2 cards when there are 2 different kinds of cards, 2 of each in each of the two decks so T(2,2)=4.
Triangle begins:
1
"0", 0, 1
1, '0', "4", 0, 1
10, 24, 27, '16', "12", 0, 1
297, 672, 736, 480, 246, '64', "24", 0, 1
13756, 30480, 32365, 21760, 10300, 3568, 970, '160', "40", 0, 1
925705, 2016480, 2116836, 1418720, 677655, 243360, 67920, 14688, 2655, '320', "60", 0, 1
Diagonal " ": T(n,2n-2) = 0, 4, 12, 24, 40, 60, 84, 112, 144, ... equals A046092
Diagonal ' ': T(n,2n-3) = 0, 16, 64, 160, 320, 560, 896, 1344, ... equals A102860
		

References

  • F. N. David and D. E. Barton, Combinatorial Chance, Hafner, NY, 1962, Ch. 7 and Ch. 12.
  • J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, pp. 174-178.
  • R. P. Stanley, Enumerative Combinatorics Volume I, Cambridge University Press, 1997, p. 71.

Crossrefs

Programs

  • Maple
    p := (x,k)->k!^2*sum(x^j/((k-j)!^2*j!),j=0..k); R := (x,n,k)->p(x,k)^n; f := (t,n,k)->sum(coeff(R(x,n,k),x,j)*(t-1)^j*(n*k-j)!,j=0..n*k);
    for n from 0 to 7 do seq(coeff(f(t,n,2),t,m)/2^n,m=0..2*n); od;
  • Mathematica
    p[x_, k_] := k!^2*Sum[ x^j/((k-j)!^2*j!), {j, 0, k}];
    R[x_, n_, k_] := p[x, k]^n;
    f[t_, n_, k_] := Sum[ Coefficient[ R[x, n, k], x, j]*(t-1)^j*(n*k-j)!, {j, 0, n*k}];
    Table[ Coefficient[ f[t, n, 2]/2^n, t, m], {n, 0, 6}, {m, 0, 2*n}] // Flatten
    (* Jean-François Alcover, Sep 17 2012, translated from Maple *)

Formula

G.f.: sum(coeff(R(x, n, k), x, j)*(t-1)^j*(n*k-j)!, j=0..n*k) where n is the number of kinds of cards, k is the number of cards of each kind (here k is 2) and R(x, n, k) is the rook polynomial given by R(x, n, k)=(k!^2*sum(x^j/((k-j)!^2*j!))^n (see Stanley or Riordan). coeff(R(x, n, k), x, j) indicates the j-th coefficient on x of the rook polynomial.

Extensions

Additional comments from Zerinvary Lajos, Jun 18 2007
Edited by M. F. Hasler, Sep 21 2015