A046092
4 times triangular numbers: a(n) = 2*n*(n+1).
Original entry on oeis.org
0, 4, 12, 24, 40, 60, 84, 112, 144, 180, 220, 264, 312, 364, 420, 480, 544, 612, 684, 760, 840, 924, 1012, 1104, 1200, 1300, 1404, 1512, 1624, 1740, 1860, 1984, 2112, 2244, 2380, 2520, 2664, 2812, 2964, 3120, 3280, 3444, 3612, 3784, 3960, 4140, 4324
Offset: 0
a(7)=112 because 112 = 2*7*(7+1).
The first few triples are (1,0,1), (3,4,5), (5,12,13), (7,24,25), ...
The first such partitions, corresponding to a(n)=1,2,3,4, are 2+2, 4+4+2+2, 6+6+4+4+2+2, 8+8+6+6+4+4+2+2. - _Augustine O. Munagi_, Dec 18 2008
- George E. Andrews and Bruce C. Berndt, Ramanujan's Lost Notebook, Part I, Springer, 2005.
- Tom M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, 1976, page 3.
- Albert H. Beiler, Recreations in the Theory of Numbers. New York: Dover, p. 125, 1964.
- Ronald L. Graham, D. E. Knuth and Oren Patashnik, Concrete Mathematics, Reading, Massachusetts: Addison-Wesley, 1994.
- Peter Winkler, Mathematical Mind-Benders, Wellesley, Massachusetts: A K Peters, 2007.
- Vincenzo Librandi, Table of n, a(n) for n = 0..10000
- Allan Bickle and Zhongyuan Che, Irregularities of Maximal k-degenerate Graphs, Discrete Applied Math. 331 (2023) 70-87.
- Allan Bickle, A Survey of Maximal k-degenerate Graphs and k-Trees, Theory and Applications of Graphs 0 1 (2024) Article 5.
- H. J. Brothers, Pascal's Prism: Supplementary Material.
- Hsien-Kuei Hwang, Svante Janson, and Tsung-Hsi Tsai, Exact and asymptotic solutions of the recurrence f(n) = f(floor(n/2)) + f(ceiling(n/2)) + g(n): theory and applications, preprint, 2016.
- Hsien-Kuei Hwang, Svante Janson, and Tsung-Hsi Tsai, Exact and Asymptotic Solutions of a Divide-and-Conquer Recurrence Dividing at Half: Theory and Applications, ACM Transactions on Algorithms, Vol. 13, No. 4 (2017), Article #47.
- Z. Janelidze, F. van Niekerk, and J. Viljoen, What is the maximal connected partial symmetry index of a connected graph of a given size?, arXiv:2502.00704 [math.CO], 2025. See p. 3.
- Milan Janjic, Two Enumerative Functions
- Ron Knott, Pythagorean Triples and Online Calculators
- Tanya Khovanova, A Miracle Equation.
- Augustine O. Munagi, Pairing conjugate partitions by residue classes, Discrete Math., 308 (2008), 2492-2501. [From _Augustine O. Munagi_, Dec 18 2008]
- Enrique Navarrete and Daniel Orellana, Finding Prime Numbers as Fixed Points of Sequences, arXiv:1907.10023 [math.NT], 2019.
- Omar E. Pol, Determinacion geometrica de los numeros primos y perfectos.
- Amelia Carolina Sparavigna, The groupoids of Mersenne, Fermat, Cullen, Woodall and other Numbers and their representations by means of integer sequences, Politecnico di Torino, Italy (2019), [math.NT].
- Amelia Carolina Sparavigna, Some Groupoids and their Representations by Means of Integer Sequences, International Journal of Sciences (2019) Vol. 8, No. 10.
- Rusliansyah D. Suprijanto, Observation on Sums of Powers of Integers Divisible by Four, Applied Mathematical Sciences, Vol. 8, 2014, no. 45, 2219 - 2226.
- Leo Tavares, Illustration: Diamond Rows
- Herman Tulleken, Polyominoes 2.2: How they fit together, (2019).
- Eric Weisstein's World of Mathematics, Aztec Diamond.
- Eric Weisstein's World of Mathematics, Cocktail Party Graph.
- Eric Weisstein's World of Mathematics, Connected Dominating Set.
- Eric Weisstein's World of Mathematics, Gear Graph.
- Eric Weisstein's World of Mathematics, Hamiltonian Path.
- Eric Weisstein's World of Mathematics, Pythagorean Triple.
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Cf.
A045943,
A028895,
A002943,
A054000,
A000330,
A007290,
A002378,
A033996,
A124080,
A028896,
A049598,
A005563,
A000217,
A033586,
A085250.
Cf. similar sequences listed in
A299645.
-
a046092 = (* 2) . a002378 -- Reinhard Zumkeller, Dec 15 2013
-
[2*n*(n+1): n in [0..50]]; // Vincenzo Librandi, Oct 04 2011
-
Table[2 n (n + 1), {n, 0, 50}] (* Stefan Steinerberger, Apr 03 2006 *)
LinearRecurrence[{3, -3, 1}, {0, 4, 12}, 50] (* Harvey P. Dale, Jul 25 2011 *)
4*Binomial[Range[50], 2] (* Harvey P. Dale, Jul 25 2011 *)
-
A046092(n):=2*n*(n+1)$
makelist(A046092(n),n,0,30); /* Martin Ettl, Nov 08 2012 */
-
a(n)=binomial(n+1,2)<<2 \\ Charles R Greathouse IV, Jun 10 2011
-
def A046092(n): return n*(n+1)<<1 # Chai Wah Wu, Mar 11 2025
A059071
Card-matching numbers (Dinner-Diner matching numbers) for 5 kinds of cards.
Original entry on oeis.org
1, 44, 45, 20, 10, 0, 1, 440192, 975360, 1035680, 696320, 329600, 114176, 31040, 5120, 1280, 0, 32, 52097831424, 179811290880, 298276007040, 315423836640, 237742646400, 135296008128, 60059024640
Offset: 0
Barbara Haas Margolius (margolius(AT)math.csuohio.edu)
There are 1,035,680 ways of matching exactly 2 cards when there are 2 cards of each kind and 5 kinds of card so T(2,2)=1,035,680.
- F. N. David and D. E. Barton, Combinatorial Chance, Hafner, NY, 1962, Ch. 7 and Ch. 12.
- J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, pp. 174-178.
- R. P. Stanley, Enumerative Combinatorics Volume I, Cambridge University Press, 1997, p. 71.
- F. F. Knudsen and I. Skau, On the Asymptotic Solution of a Card-Matching Problem, Mathematics Magazine 69 (1996), 190-197.
- B. H. Margolius, The Dinner-Diner Matching Problem, Mathematics Magazine, 76 (2003), 107-118.
- Barbara H. Margolius, Dinner-Diner Matching Probabilities
- S. G. Penrice, Derangements, permanents and Christmas presents, The American Mathematical Monthly 98(1991), 617-620.
- Index entries for sequences related to card matching
-
p := (x,k)->k!^2*sum(x^j/((k-j)!^2*j!),j=0..k); R := (x,n,k)->p(x,k)^n; f := (t,n,k)->sum(coeff(R(x,n,k),x,j)*(t-1)^j*(n*k-j)!,j=0..n*k);
for n from 0 to 3 do seq(coeff(f(t,5,n),t,m),m=0..5*n); od;
-
p[x_, k_] := k!^2*Sum[ x^j/((k-j)!^2*j!), {j, 0, k}]; r[x_, n_, k_] := p[x, k]^n; f[t_, n_, k_] := Sum[ Coefficient[ r[x, n, k], x, j]*(t-1)^j*(n*k-j)!, {j, 0, n*k}]; Table[ Coefficient[ f[t, 5, n], t, m], {n, 0, 3}, {m, 0, 5*n}] // Flatten (* Jean-François Alcover, Mar 04 2013, translated from Maple *)
A000459
Number of multiset permutations of {1, 1, 2, 2, ..., n, n} with no fixed points.
Original entry on oeis.org
1, 0, 1, 10, 297, 13756, 925705, 85394646, 10351036465, 1596005408152, 305104214112561, 70830194649795010, 19629681235869138841, 6401745422388206166420, 2427004973632598297444857, 1058435896607583305978409166, 526149167104704966948064477665
Offset: 0
There are 297 ways of achieving zero matches when there are 2 cards of each kind and 4 kinds of card so a(4)=297.
From _Peter Bala_, Jul 08 2014: (Start)
a(3) = 10: the 10 permutations of the multiset {1,1,2,2,3,3} that have no fixed points are
{2,2,3,3,1,1}, {3,3,1,1,2,2}
{2,3,1,3,1,2}, {2,3,1,3,2,1}
{2,3,3,1,1,2}, {2,3,3,1,2,1}
{3,2,1,3,1,2}, {3,2,1,3,2,1}
{3,2,3,1,1,2}, {3,2,3,1,2,1}
(End)
- F. N. David and D. E. Barton, Combinatorial Chance, Hafner, NY, 1962, Ch. 7 and Ch. 12.
- J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, pp. 174-178.
- R. P. Stanley, Enumerative Combinatorics Volume I, Cambridge University Press, 1997, p. 71.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- T. D. Noe, Table of n, a(n) for n = 0..100
- Per Alexandersson and Frether Getachew, An involution on derangements, arXiv:2105.08455 [math.CO], 2021.
- Shalosh B. Ekhad, Christoph Koutschan, and Doron Zeilberger, There are EXACTLY 1493804444499093354916284290188948031229880469556 Ways to Derange a Standard Deck of Cards (ignoring suits) [and many other such useful facts], arXiv:2101.10147 [math.CO], 2021.
- F. F. Knudsen and I. Skau, On the Asymptotic Solution of a Card-Matching Problem, Mathematics Magazine 69 (1996), 190-197.
- P. A. MacMahon, Combinatory Analysis Cambridge: The University Press 1915-1916
- B. H. Margolius, The Dinner-Diner Matching Problem, Mathematics Magazine, 76 (2003), 107-118.
- B. H. Margolius, Dinner-Diner Matching Probabilities
- R. D. McKelvey and A. McLennan, The maximal number of regular totally mixed Nash equilibria, J. Economic Theory, 72:411--425, 1997.
- L. I. Nicolaescu, Derangements and asymptotics of the Laplace transforms of large powers of a polynomial, New York J. Math. 10 (2004) 117-131.
- S. G. Penrice, Derangements, permanents and Christmas presents, The American Mathematical Monthly 98 (1991), 617-620.
- John Riordan and N. J. A. Sloane, Correspondence, 1974
- R. Vidunas, Counting derangements and Nash equilibria, arXiv preprint arXiv:1401.5400 [math.CO], 2014-2016.
- Raimundas Vidunas, Counting derangements and Nash equilibria Ann. Comb. 21, No. 1, 131-152 (2017).
- Wikipedia, Permutations of multisets
- Index entries for sequences related to card matching
-
I:=[0,1]; [n le 2 select I[n] else n*(2*n-1)*Self(n-1)+2*n*(n-1)*Self(n-2)-(2*n-1): n in [1..30]]; // Vincenzo Librandi, Sep 28 2015
-
p := (x,k)->k!^2*sum(x^j/((k-j)!^2*j!),j=0..k); R := (x,n,k)->p(x,k)^n; f := (t,n,k)->sum(coeff(R(x,n,k),x,j)*(t-1)^j*(n*k-j)!,j=0..n*k); seq(f(0,n,2)/2!^n,n=0..18);
-
RecurrenceTable[{(2*n+3)*a[n+3]==(2*n+5)^2*(n+2)*a[n+2]+(2*n+3)*(n+2)*a[n+1]-2*(2*n+5)*(n+1)*(n+2)*a[n],a[1]==0,a[2]==1,a[3]==10},a,{n,1,25}] (* Vaclav Kotesovec, Aug 31 2012 *)
a[n_] := a[n] = n*(2*n-1)*a[n-1] + 2*n*(n-1)*a[n-2] - (2*n-1); a[0] = 1; a[1] = 0; a[2] = 1; Table[a[n], {n, 0, 14}] (* Jean-François Alcover, Mar 04 2013 *)
a[n_] := Sum[(2*(n-m))! / 2^(n-m) Binomial[n, m] Hypergeometric1F1[m-n, 2*(m - n), -4], {m, 0, n}]; Table[a[n], {n, 0, 16}] (* Peter Luschny, Nov 15 2023 *)
-
a(n) = (2^n*round(2^(n/2+3/4)*Pi^(-1/2)*exp(-2)*n!*besselk(1/2+n,2^(1/2))))/2^n;
vector(15, n, a(n))\\ Altug Alkan, Sep 28 2015
-
{ A000459(n) = sum(m=0,n, sum(k=0,n-m, (-1)^k * binomial(n,k) * binomial(n-k,m) * 2^(2*k+m-n) * (2*n-2*m-k)! )); } \\ Max Alekseyev, Oct 06 2016
More terms and edited by Barbara Haas Margolius (margolius(AT)math.csuohio.edu), Dec 22 2000
A102860
Number of ways to change three non-identical letters in the word aabbccdd..., where there are n types of letters.
Original entry on oeis.org
0, 16, 64, 160, 320, 560, 896, 1344, 1920, 2640, 3520, 4576, 5824, 7280, 8960, 10880, 13056, 15504, 18240, 21280, 24640, 28336, 32384, 36800, 41600, 46800, 52416, 58464, 64960, 71920, 79360, 87296, 95744, 104720, 114240, 124320, 134976, 146224
Offset: 2
a(4) = 64 = 2*C(8,3) - 8*C(4,2) = 2*56 - 8*6 = 112 - 48.
- Stefano Spezia, Table of n, a(n) for n = 2..10000
- Mark Roger Sepanski, On Divisibility of Convolutions of Central Binomial Coefficients, Electronic Journal of Combinatorics, 21 (1) 2014, Article P1.32.
- Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).
-
[8*n*(n-1)*(n-2)/3 : n in [2..50]]; // Wesley Ivan Hurt, Apr 06 2015
-
A102860:=n->8*n*(n-1)*(n-2)/3: seq(A102860(n), n=2..50); # Wesley Ivan Hurt, Apr 06 2015
-
Table[8n(n-1)(n-2)/3,{n,2,50}] (* Wesley Ivan Hurt, Apr 06 2015 *)
LinearRecurrence[{4,-6,4,-1},{0,16,64,160},50] (* Harvey P. Dale, May 20 2021 *)
-
concat([0],Vec(16*x^3/(1-x)^4+O(x^40))) \\ Stefano Spezia, May 22 2021
A059073
Card-matching numbers (Dinner-Diner matching numbers).
Original entry on oeis.org
1, 0, 1, 56, 13833, 6699824, 5691917785, 7785547001784, 16086070907249329, 47799861987366600992, 196500286135805946117201, 1082973554682091552092493880, 7797122311868240909226166565881
Offset: 0
Barbara Haas Margolius (margolius(AT)math.csuohio.edu)
There are 56 ways of achieving zero matches when there are 3 cards of each kind and 3 kinds of card so a(3)=56.
- F. N. David and D. E. Barton, Combinatorial Chance, Hafner, NY, 1962, Ch. 7 and Ch. 12.
- J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, pp. 174-178.
- R. P. Stanley, Enumerative Combinatorics Volume I, Cambridge University Press, 1997, p. 71.
- Michael De Vlieger, Table of n, a(n) for n = 0..100
- Shalosh B. Ekhad, Christoph Koutschan, and Doron Zeilberger, There are EXACTLY 1493804444499093354916284290188948031229880469556 Ways to Derange a Standard Deck of Cards (ignoring suits) [and many other such useful facts], arXiv:2101.10147 [math.CO], 2021.
- F. F. Knudsen and I. Skau, On the Asymptotic Solution of a Card-Matching Problem, Mathematics Magazine 69 (1996), 190-197.
- Barbara H. Margolius, Dinner-Diner Matching Probabilities
- Barbara H. Margolius, The Dinner-Diner Matching Problem, Mathematics Magazine, 76 (2003), 107-118.
- R. D. McKelvey and A. McLennan, The maximal number of regular totally mixed Nash equilibria, J. Economic Theory, 72 (1997), 411-425.
- S. G. Penrice, Derangements, permanents and Christmas presents, The American Mathematical Monthly 98(1991), 617-620.
- Raimundas Vidunas, MacMahon's master theorem and totally mixed Nash equilibria, arXiv preprint arXiv:1401.5400 [math.CO], 2014.
- Raimundas Vidunas, Counting derangements and Nash equilibria, Ann. Comb. 21, No. 1, 131-152 (2017).
- Index entries for sequences related to card matching
-
p := (x,k)->k!^2*sum(x^j/((k-j)!^2*j!),j=0..k); R := (x,n,k)->p(x,k)^n; f := (t,n,k)->sum(coeff(R(x,n,k),x,j)*(t-1)^j*(n*k-j)!,j=0..n*k); seq(f(0,n,3)/3!^n,n=0..18);
-
p[x_, k_] := k!^2*Sum[x^j/((k-j)!^2*j!), {j, 0, k}]; R[x_, n_, k_] := p[x, k]^n; f[t_, n_, k_] := Sum[Coefficient[R[x, n, k], x, j]*(t-1)^j*(n*k-j)!, {j, 0, n*k}]; Table[f[0, n, 3]/3!^n, {n, 0, 12}] (* Jean-François Alcover, May 21 2012, translated from Maple *)
A059058
Card-matching numbers (Dinner-Diner matching numbers).
Original entry on oeis.org
1, 0, 0, 0, 1, 1, 0, 9, 0, 9, 0, 1, 56, 216, 378, 435, 324, 189, 54, 27, 0, 1, 13833, 49464, 84510, 90944, 69039, 38448, 16476, 5184, 1431, 216, 54, 0, 1, 6699824, 23123880, 38358540, 40563765, 30573900, 17399178, 7723640
Offset: 0
Barbara Haas Margolius (margolius(AT)math.csuohio.edu)
There are 9 ways of matching exactly 2 cards when there are 2 different kinds of cards, 3 of each in each of the two decks so T(2,2)=9.
- F. N. David and D. E. Barton, Combinatorial Chance, Hafner, NY, 1962, Ch. 7 and Ch. 12.
- J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, pp. 174-178.
- R. P. Stanley, Enumerative Combinatorics Volume I, Cambridge University Press, 1997, p. 71.
- Vincenzo Librandi, Rows n = 1..30, flattened
- F. F. Knudsen and I. Skau, On the Asymptotic Solution of a Card-Matching Problem, Mathematics Magazine 69 (1996), 190-197.
- Barbara H. Margolius, Dinner-Diner Matching Probabilities
- B. H. Margolius, The Dinner-Diner Matching Problem, Mathematics Magazine, 76 (2003), 107-118.
- S. G. Penrice, Derangements, permanents and Christmas presents, The American Mathematical Monthly 98(1991), 617-620.
- Index entries for sequences related to card matching
-
p := (x,k)->k!^2*sum(x^j/((k-j)!^2*j!),j=0..k); R := (x,n,k)->p(x,k)^n; f := (t,n,k)->sum(coeff(R(x,n,k),x,j)*(t-1)^j*(n*k-j)!,j=0..n*k);
for n from 0 to 6 do seq(coeff(f(t,n,3),t,m)/3!^n,m=0..3*n); od;
-
p[x_, k_] := k!^2*Sum[ x^j/((k-j)!^2*j!), {j, 0, k}]; f[t_, n_, k_] := Sum[ Coefficient[ p[x, k]^n, x, j]*(t-1)^j*(n*k-j)!, {j, 0, n*k}]; Flatten[ Table[ Coefficient[ f[t, n, 3], t, m]/3!^n, {n, 0, 6}, {m, 0, 3n}]] (* Jean-François Alcover, Jan 31 2012, after Maple *)
A000489
Card matching: Coefficients B[n,3] of t^3 in the reduced hit polynomial A[n,n,n](t).
Original entry on oeis.org
1, 16, 435, 7136, 99350, 1234032, 14219212, 155251840, 1628202762, 16550991200, 164111079110, 1594594348800, 15235525651840, 143518352447680, 1335670583147400, 12301278983461376, 112264111607438906, 1016361486936571680, 9136254276320346046
Offset: 1
- J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 193.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
-
[1, 16] cat [&+[3*Binomial(n, 3)*Binomial(n, k+3)*Binomial(n, k)*Binomial(n-3, k) + 6*n*Binomial(n, 2)*Binomial(n, k+1)*Binomial(n-1, k+2)*Binomial(n-2, k): k in [0..n-3]] + &+[n^3*Binomial(n-1, k)^3: k in [0..n-1]]: n in [3..20]]; // Vincenzo Librandi, Sep 22 2015
-
a[n_] := 3*Binomial[n, 3]*Sum[Binomial[n, k + 3]*Binomial[n, k]*Binomial[n - 3, k], {k, 0, n - 3}] + 6 n*Binomial[n, 2]*Sum[Binomial[n, k + 1]*Binomial[n - 1, k + 2]*Binomial[n - 2, k], {k, 0, n - 3}] + n^3*Sum[Binomial[n - 1, k]^3, {k, 0, n - 1}]; Table[a[n], {n, 20}] (* T. D. Noe, Jun 20 2012 *)
-
A000489(n)={3*binomial(n, 3)*sum(k=0,n-3,binomial(n, k+3)*binomial(n, k)*binomial(n-3, k))+6*n*binomial(n, 2)*sum(k=0,n-3,binomial(n, k+1)*binomial(n-1, k+2)*binomial(n-2, k))+n^3*sum(k=0,n-1,binomial(n-1, k)^3)} \\ M. F. Hasler, Sep 20 2015
A059060
Card-matching numbers (Dinner-Diner matching numbers).
Original entry on oeis.org
1, 0, 0, 0, 0, 1, 1, 0, 16, 0, 36, 0, 16, 0, 1, 346, 1824, 4536, 7136, 7947, 6336, 3936, 1728, 684, 128, 48, 0, 1, 748521, 3662976, 8607744, 12880512, 13731616, 11042688, 6928704, 3458432, 1395126, 453888, 122016, 25344, 4824, 512, 96, 0, 1, 3993445276
Offset: 0
Barbara Haas Margolius (margolius(AT)math.csuohio.edu)
There are 16 ways of matching exactly 2 cards when there are 2 different kinds of cards, 4 of each so T(2,2)=16.
From _Joerg Arndt_, Nov 08 2020: (Start)
The first few rows are
1
0, 0, 0, 0, 1
1, 0, 16, 0, 36, 0, 16, 0, 1
346, 1824, 4536, 7136, 7947, 6336, 3936, 1728, 684, 128, 48, 0, 1
748521, 3662976, 8607744, 12880512, 13731616, 11042688, 6928704, 3458432, 1395126, 453888, 122016, 25344, 4824, 512, 96, 0, 1
3993445276, 18743463360, 42506546320, 61907282240, 64917874125, 52087325696, 33176621920, 17181584640, 7352761180, 2628808000, 790912656, 201062080, 43284010, 7873920, 1216000, 154496, 17640, 1280, 160, 0, 1 (End)
- F. N. David and D. E. Barton, Combinatorial Chance, Hafner, NY, 1962, Ch. 7 and Ch. 12.
- J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, pp. 174-178.
- R. P. Stanley, Enumerative Combinatorics Volume I, Cambridge University Press, 1997, p. 71.
- F. F. Knudsen and I. Skau, On the Asymptotic Solution of a Card-Matching Problem, Mathematics Magazine 69 (1996), 190-197.
- Barbara H. Margolius, Dinner-Diner Matching Probabilities
- B. H. Margolius, The Dinner-Diner Matching Problem, Mathematics Magazine, 76 (2003), 107-118.
- S. G. Penrice, Derangements, permanents and Christmas presents, The American Mathematical Monthly 98(1991), 617-620.
- Index entries for sequences related to card matching
-
p := (x,k)->k!^2*sum(x^j/((k-j)!^2*j!),j=0..k); R := (x,n,k)->p(x,k)^n; f := (t,n,k)->sum(coeff(R(x,n,k),x,j)*(t-1)^j*(n*k-j)!,j=0..n*k);
for n from 0 to 5 do seq(coeff(f(t,n,4),t,m)/4!^n,m=0..4*n); od;
-
p[x_, k_] := k!^2*Sum[ x^j/((k-j)!^2*j!), {j, 0, k}]; r[x_, n_, k_] := p[x, k]^n; f[t_, n_, k_] := Sum[ Coefficient[r[x, n, k], x, j]*(t-1)^j*(n*k-j)!, {j, 0, n*k}]; Table[ Coefficient[f[t, n, 4], t, m]/4!^n, {n, 0, 5}, {m, 0, 4*n}] // Flatten (* Jean-François Alcover, Feb 22 2013, translated from Maple *)
A059062
Card-matching numbers (Dinner-Diner matching numbers).
Original entry on oeis.org
1, 0, 0, 0, 0, 0, 1, 1, 0, 25, 0, 100, 0, 100, 0, 25, 0, 1, 2252, 15150, 48600, 99350, 144150, 156753, 131000, 87075, 45000, 19300, 6000, 1800, 250, 75, 0, 1, 44127009, 274314600, 822998550, 1583402400, 2189652825, 2311947008
Offset: 0
Barbara Haas Margolius (margolius(AT)math.csuohio.edu)
There are 25 ways of matching exactly 2 cards when there are 2 different kinds of cards, 5 of each so T(2,2)=25.
- F. N. David and D. E. Barton, Combinatorial Chance, Hafner, NY, 1962, Ch. 7 and Ch. 12.
- J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, pp. 174-178.
- R. P. Stanley, Enumerative Combinatorics Volume I, Cambridge University Press, 1997, p. 71.
- Vincenzo Librandi, Rows n = 1..15 of triangle, flattened
- F. F. Knudsen and I. Skau, On the Asymptotic Solution of a Card-Matching Problem, Mathematics Magazine 69 (1996), 190-197.
- Barbara H. Margolius, Dinner-Diner Matching Probabilities
- B. H. Margolius, The Dinner-Diner Matching Problem, Mathematics Magazine, 76 (2003), 107-118.
- S. G. Penrice, Derangements, permanents and Christmas presents, The American Mathematical Monthly 98(1991), 617-620.
- Index entries for sequences related to card matching
-
p := (x,k)->k!^2*sum(x^j/((k-j)!^2*j!),j=0..k); R := (x,n,k)->p(x,k)^n; f := (t,n,k)->sum(coeff(R(x,n,k),x,j)*(t-1)^j*(n*k-j)!,j=0..n*k);
for n from 0 to 4 do seq(coeff(f(t,n,5),t,m)/5!^n,m=0..5*n); od;
-
nmax = 4; r[x_, n_, k_] := (k!^2*Sum[ x^j/((k-j)!^2*j!), {j, 0, k}])^n; f[t_, n_, k_] := Sum[ Coefficient[ r[x, n, k], x, j]*(t-1)^j*(n*k-j)!, {j, 0, n*k}]; Flatten[ Table[ Coefficient[ f[t, n, 5], t, m]/5!^n, {n, 0, nmax}, {m, 0, 5n}]](* Jean-François Alcover, Nov 23 2011, after Maple *)
A371252
Number of derangements of a multiset comprising n repeats of a 4-element set.
Original entry on oeis.org
1, 9, 297, 13833, 748521, 44127009, 2750141241, 178218782793, 11887871843817, 810822837267729, 56289612791763297, 3964402453931011233, 282558393168537751929, 20342533966643026042641, 1477174422125162468055897, 108064155440237168218117833, 7956914294959071176435002857
Offset: 0
There are a(13) = 20342533966643026042641 bridge deals where North, South, East and West are void in clubs, diamonds, hearts and spades, respectively.
- Jeremy Tan, Table of n, a(n) for n = 0..200
- Shalosh B. Ekhad, Christoph Koutschan and Doron Zeilberger, There are EXACTLY 1493804444499093354916284290188948031229880469556 Ways to Derange a Standard Deck of Cards (ignoring suits) [and many other such useful facts], arXiv:2101.10147 [math.CO], 2021.
- Shalosh B. Ekhad, Terms, recurrences and asymptotics for multiset derangements.
- S. Even and J. Gillis, Derangements and Laguerre polynomials, Mathematical Proceedings of the Cambridge Philosophical Society, Volume 79, Issue 1, January 1976, pp. 135-143.
- B. H. Margolius, The Dinner-Diner Matching Problem, Mathematics Magazine, 76 (2003), pp. 107-118.
- Index entries for sequences related to card matching
-
Table[Integrate[Exp[-x] LaguerreL[n, x]^4, {x, 0, Infinity}], {n, 0, 16}]
(* or *)
rec = n^3(2n-1)(5n-6)(10n-13) a[n] == (8300n^6-37350n^5+66698n^4-60393n^3+29297n^2-7263n+738) a[n-1] - (n-1)(16300n^5-81500n^4+151553n^3-123364n^2+39501n-4338) a[n-2] + 162(n-2)^3(n-1)(5n-1)(10n-3) a[n-3];
RecurrenceTable[{rec, a[0] == 1, a[1] == 9, a[2] == 297}, a, {n, 0, 16}]
-
def A371252(n):
l = [1, 9, 297]
for k in range(3, n+1):
m1 = (((((8300*k-37350)*k+66698)*k-60393)*k+29297)*k-7263)*k+738
m2 = (k-1)*(((((16300*k-81500)*k+151553)*k-123364)*k+39501)*k-4338)
m3 = 162*(k-2)**3*(k-1)*(5*k-1)*(10*k-3)
r = (m1*l[-1] - m2*l[-2] + m3*l[-3]) // (k**3*(2*k-1)*(5*k-6)*(10*k-13))
l.append(r)
return l[n]
Showing 1-10 of 22 results.
Comments