A372307
Square array read by antidiagonals: T(n,k) is the number of derangements of a multiset comprising n repeats of a k-element set.
Original entry on oeis.org
1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 2, 1, 0, 1, 1, 9, 10, 1, 0, 1, 1, 44, 297, 56, 1, 0, 1, 1, 265, 13756, 13833, 346, 1, 0, 1, 1, 1854, 925705, 6699824, 748521, 2252, 1, 0, 1, 1, 14833, 85394646, 5691917785, 3993445276, 44127009, 15184, 1, 0, 1
Offset: 0
Square array T(n,k) begins:
1, 1, 1, 1, 1, 1, ...
1, 0, 1, 2, 9, 44, ...
1, 0, 1, 10, 297, 13756, ...
1, 0, 1, 56, 13833, 6699824, ...
1, 0, 1, 346, 748521, 3993445276, ...
1, 0, 1, 2252, 44127009, 2671644472544, ...
1, 0, 1, 15184, 2750141241, 1926172117389136, ...
1, 0, 1, 104960, 178218782793, 1463447061709156064, ...
- Jeremy Tan, Antidiagonals n = 0..32, flattened
- Shalosh B. Ekhad, Christoph Koutschan and Doron Zeilberger, There are EXACTLY 1493804444499093354916284290188948031229880469556 Ways to Derange a Standard Deck of Cards (ignoring suits) [and many other such useful facts], arXiv:2101.10147 [math.CO], 2021.
- S. Even and J. Gillis, Derangements and Laguerre polynomials, Mathematical Proceedings of the Cambridge Philosophical Society, Volume 79, Issue 1, January 1976, pp. 135-143.
- B. H. Margolius, The Dinner-Diner Matching Problem, Mathematics Magazine, 76 (2003), pp. 107-118.
- Jeremy Tan, Python program
- Raimundas Vidunas, MacMahon's master theorem and totally mixed Nash equilibria, arXiv:1401.5400 [math.CO], 2014.
- Raimundas Vidunas, Counting derangements and Nash equilibria, Ann. Comb. 21, No. 1, 131-152 (2017).
- Index entries for sequences related to card matching
-
A:= (n, k)-> (-1)^(n*k)*int(exp(-x)*orthopoly[L](n, x)^k, x=0..infinity):
seq(seq(A(n, d-n), n=0..d), d=0..10); # Alois P. Heinz, Aug 27 2024
-
Table[Abs[Integrate[Exp[-x] LaguerreL[n, x]^(s-n), {x, 0, Infinity}]], {s, 0, 9}, {n, 0, s}] // Flatten
-
# See link.
A059074
Number of derangements of a multiset comprising 4 repeats of an n-element set.
Original entry on oeis.org
1, 0, 1, 346, 748521, 3993445276, 45131501617225, 964363228180815366, 35780355973270898382001, 2158610844939711892526650456, 201028342764877992289387752167601, 27708893753238763155350683269145066450, 5459844285803153226360263675364357481841881
Offset: 0
Barbara Haas Margolius (margolius(AT)math.csuohio.edu)
There are 346 ways of achieving zero matches when there are 4 cards of each kind and 3 kinds of card so A(3)=346.
- F. N. David and D. E. Barton, Combinatorial Chance, Hafner, NY, 1962, Ch. 7 and Ch. 12.
- R.D. McKelvey and A. McLennan, The maximal number of regular totally mixed Nash equilibria, J. Economic Theory, 72:411-425, 1997.
- S. G. Penrice, Derangements, permanents and Christmas presents, The American Mathematical Monthly 98(1991), 617-620.
- J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, pp. 174-178.
- R. P. Stanley, Enumerative Combinatorics Volume I, Cambridge University Press, 1997, p. 71.
- Michael De Vlieger, Table of n, a(n) for n = 0..100
- Shalosh B. Ekhad, Christoph Koutschan, and Doron Zeilberger, There are EXACTLY 1493804444499093354916284290188948031229880469556 Ways to Derange a Standard Deck of Cards (ignoring suits) [and many other such useful facts], arXiv:2101.10147 [math.CO], 2021.
- Shalosh B. Ekhad, Terms and recurrences for multiset derangements.
- S. Even and J. Gillis, Derangements and Laguerre polynomials, Mathematical Proceedings of the Cambridge Philosophical Society, Volume 79, Issue 1, January 1976, pp. 135-143.
- F. F. Knudsen and I. Skau, On the Asymptotic Solution of a Card-Matching Problem, Mathematics Magazine 69 (1996), 190-197.
- Barbara H. Margolius, The Dinner-Diner Matching Problem, Mathematics Magazine, 76 (2003), 107-118.
- Barbara H. Margolius, Dinner-Diner Matching Probabilities
- Raimundas Vidunas, MacMahon's master theorem and totally mixed Nash equilibria, arXiv preprint arXiv:1401.5400 [math.CO], 2014.
- Raimundas Vidunas, Counting derangements and Nash equilibria Ann. Comb. 21, No. 1, 131-152 (2017).
- Index entries for sequences related to card matching
-
p := (x,k)->k!^2*sum(x^j/((k-j)!^2*j!),j=0..k); R := (x,n,k)->p(x,k)^n; f := (t,n,k)->sum(coeff(R(x,n,k),x,j)*(t-1)^j*(n*k-j)!,j=0..n*k); seq(f(0,n,4)/4!^n,n=0..18);
-
p[x_, k_] := k!^2*Sum[x^j/((k - j)!^2*j!), {j, 0, k}]; r[x_, n_, k_] := p[x, k]^n; f[t_, n_, k_] := Sum[Coefficient[r[x, n, k], x, j]*(t - 1)^j*(n*k - j)!, {j, 0, n*k}]; Table[f[0, n, 4]/4!^n, {n, 0, 18}] // Flatten (* Jean-François Alcover, Oct 21 2013, after Maple *)
Table[Integrate[Exp[-x] LaguerreL[4, x]^n, {x, 0, Infinity}], {n, 0, 16}] (* Jeremy Tan, Apr 25 2024 *)
rec = 3*(128*n^3 - 560*n^2 + 840*n - 537)*a[n] - n*(4096*n^6 - 24064*n^5 + 62720*n^4 - 92992*n^3 + 75248*n^2 - 38670*n + 4179)*a[n-1] - 2*n*(n-1)*(18432*n^5 - 99072*n^4 + 197120*n^3 - 191776*n^2 + 144568*n - 92531)*a[n-2] + 48*n*(n-1)*(n-2)*(768*n^4 - 2976*n^3 + 3104*n^2 - 2438*n + 1583)*a[n-3] + 288*n*(n-1)*(n-2)*(n-3)*(128*n^3 - 176*n^2 + 104*n - 129)*a[n-4] == 8192*n^6 - 28672*n^5 + 23680*n^4 - 7904*n^3 + 1416*n^2 + 14382*n - 1611;
RecurrenceTable[{rec, a[0] == 1, a[1] == 0, a[2] == 1, a[3] == 346}, a, {n, 0, 16}] (* Jeremy Tan, Apr 25 2024 *)
-
def A059074(n):
l = [1, 0, 1, 346]
for k in range(4, n+1):
num = (((((8192*k-28672)*k+23680)*k-7904)*k+1416)*k+14382)*k-1611 \
+ k*((((((4096*k-24064)*k+62720)*k-92992)*k+75248)*k-38670)*k+4179)*l[-1] \
+ 2*k*(k-1)*(((((18432*k-99072)*k+197120)*k-191776)*k+144568)*k-92531)*l[-2] \
- 48*k*(k-1)*(k-2)*((((768*k-2976)*k+3104)*k-2438)*k+1583)*l[-3] \
- 288*k*(k-1)*(k-2)*(k-3)*(((128*k-176)*k+104)*k-129)*l[-4]
r = num // (3*(((128*k-560)*k+840)*k-537))
l.append(r)
return l[n] # Jeremy Tan, Apr 25 2024
Showing 1-2 of 2 results.
Comments