A000279
Card matching: coefficients B[n,1] of t in the reduced hit polynomial A[n,n,n](t).
Original entry on oeis.org
3, 24, 216, 1824, 15150, 124416, 1014888, 8241792, 66724398, 538990800, 4346692680, 35009591040, 281699380560, 2264868936960, 18198009147600, 146142982814208, 1173123636533454, 9413509300965936, 75513633110271264, 605598295606296000, 4855626127979443908, 38924245740546950784
Offset: 1
- J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 193.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
-
f[n_] := HypergeometricPFQ[{-n, -n, -n}, {1, 1}, -1]; a[n_] := n^2*(f[n]+4*f[n-1])/(n+1); Array[a, 20] (* Jean-François Alcover, Mar 11 2014, after Mark van Hoeij *)
-
A000279(n)=3*n*sum(k=0,n-1,binomial(n,k+1)*binomial(n,k)*binomial(n-1,k)) \\ M. F. Hasler, Sep 21 2015
Three lines of data completed and more explicit definition by
M. F. Hasler, Sep 21 2015
A000535
Card matching: coefficients B[n,2] of t^2 in the reduced hit polynomial A[n,n,n](t).
Original entry on oeis.org
0, 27, 378, 4536, 48600, 489780, 4738104, 44535456, 409752432, 3708359550, 33125746500, 292779558720, 2565087894720, 22307854940280, 192788833482000, 1657111548654720, 14176605442521312, 120779466450505758, 1025230099571720676, 8674221270307971600
Offset: 1
- J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 193.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
-
a[n_] := 3*Binomial[n, 2]*Sum[Binomial[n, k+2]*Binomial[n, k]*Binomial[n-2, k], {k, 0, n-2}] + 3n^2*Sum[Binomial[n, k+1]*Binomial[n-1, k+1]*Binomial[ n-1, k], {k, 0, n-2}] (* Jean-François Alcover, Feb 09 2016 *)
-
A000535(n)=3*binomial(n,2)*sum(k=0,n-2,binomial(n,k+2)*binomial(n,k)*binomial(n-2,k))+3*n^2*sum(k=0,n-2,binomial(n,k+1)*binomial(n-1,k+1)*binomial(n-1,k)) \\ M. F. Hasler, Sep 30 2015
A262407
a(n) = Sum_{k=0..n-1} C(n,k+1)*C(n,k)*C(n-1,k).
Original entry on oeis.org
0, 1, 4, 24, 152, 1010, 6912, 48328, 343408, 2471274, 17966360, 131717960, 972488640, 7223061040, 53925450880, 404400203280, 3044645475296, 23002424245754, 174324246314184, 1324800580881952, 10093304926771600, 77073430602848316, 589761299099196224
Offset: 0
-
a:= proc(n) option remember; `if`(n<2, n,
((21*n^3-49*n^2+30*n-8)*a(n-1)+
(8*(n-1))*(n-2)*(3*n-1)*a(n-2))/
((3*n-4)*(n+1)*(n-1)))
end:
seq(a(n), n=0..30); # Alois P. Heinz, Sep 22 2015
-
f[n_]:=HypergeometricPFQ[{-n, -n, -n}, {1, 1}, -1]; a[n_]:=n^2 (f[n] + 4 f[n - 1])/(3 n^2 + 3 n); Array[a, 25] (* Vincenzo Librandi, Sep 22 2015 *)
Table[Sum[Binomial[n,k+1]Binomial[n,k]Binomial[n-1,k],{k,0,n-1}],{n,0,30}] (* Harvey P. Dale, Apr 09 2021 *)
-
a(n)=sum(k=0, n-1, binomial(n, k+1)*binomial(n, k)*binomial(n-1, k))
A126681
a(n) = Product_{i=5..n} Stirling_2(i,5).
Original entry on oeis.org
1, 15, 2100, 2205000, 15326955000, 651778761375000, 160813373794053750000, 221825967811517742750000000, 1665580501138748782956117750000000, 66748196878452897333173822295371250000000, 14068311871625131535989260349822728619050000000000, 15421550528128282332258412096965369287417159977500000000000
Offset: 5
-
Rest[FoldList[Times,1,StirlingS2[Range[5,20],5]]] (* Harvey P. Dale, May 10 2013 *)
Showing 1-4 of 4 results.
Comments