A000489 Card matching: Coefficients B[n,3] of t^3 in the reduced hit polynomial A[n,n,n](t).
1, 16, 435, 7136, 99350, 1234032, 14219212, 155251840, 1628202762, 16550991200, 164111079110, 1594594348800, 15235525651840, 143518352447680, 1335670583147400, 12301278983461376, 112264111607438906, 1016361486936571680, 9136254276320346046
Offset: 1
Keywords
References
- J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 193.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
Programs
-
Magma
[1, 16] cat [&+[3*Binomial(n, 3)*Binomial(n, k+3)*Binomial(n, k)*Binomial(n-3, k) + 6*n*Binomial(n, 2)*Binomial(n, k+1)*Binomial(n-1, k+2)*Binomial(n-2, k): k in [0..n-3]] + &+[n^3*Binomial(n-1, k)^3: k in [0..n-1]]: n in [3..20]]; // Vincenzo Librandi, Sep 22 2015
-
Mathematica
a[n_] := 3*Binomial[n, 3]*Sum[Binomial[n, k + 3]*Binomial[n, k]*Binomial[n - 3, k], {k, 0, n - 3}] + 6 n*Binomial[n, 2]*Sum[Binomial[n, k + 1]*Binomial[n - 1, k + 2]*Binomial[n - 2, k], {k, 0, n - 3}] + n^3*Sum[Binomial[n - 1, k]^3, {k, 0, n - 1}]; Table[a[n], {n, 20}] (* T. D. Noe, Jun 20 2012 *)
-
PARI
A000489(n)={3*binomial(n, 3)*sum(k=0,n-3,binomial(n, k+3)*binomial(n, k)*binomial(n-3, k))+6*n*binomial(n, 2)*sum(k=0,n-3,binomial(n, k+1)*binomial(n-1, k+2)*binomial(n-2, k))+n^3*sum(k=0,n-1,binomial(n-1, k)^3)} \\ M. F. Hasler, Sep 20 2015
Formula
a(n) = 3*binomial(n, 3)*sum(binomial(n, k+3)*binomial(n, k)*binomial(n-3, k), k=0..n-3) + 6n*binomial(n, 2)*sum(binomial(n, k+1)*binomial(n-1, k+2)*binomial(n-2, k), k=0..n-3) + n^3*sum(binomial(n-1, k)^3, k=0..n-1).
Recurrence: (n+3)*(243*n^7 - 1701*n^6 + 4239*n^5 - 4671*n^4 + 6042*n^3 - 17352*n^2 + 25032*n - 12016)*(n-1)^2*a(n) = n*(1701*n^9 - 6804*n^8 + 270*n^7 + 19116*n^6 + 35085*n^5 - 203640*n^4 + 324384*n^3 - 246736*n^2 + 75440*n - 5440)*a(n-1) + 8*n*(243*n^7 - 864*n^5 - 486*n^4 + 4233*n^3 - 5274*n^2 + 2460*n - 184)*(n-1)^2*a(n-2). - Vaclav Kotesovec, Aug 07 2013
a(n) ~ 3*sqrt(3)*n^2*8^(n-1)/Pi. - Vaclav Kotesovec, Aug 07 2013
a(n) = n^2*((27*n^3+54*n^2-57*n+8)*(n+2)*A001181(n)-(189*n^3+189*n^2-30*n+16)*(n-1)*A001181(n-1))/96. - Mark van Hoeij, Nov 14 2023
Extensions
More terms from Vladeta Jovovic, Apr 26 2000
More terms from Emeric Deutsch, Feb 19 2004
Definition made more precise by M. F. Hasler, Sep 22 2015
Comments