Original entry on oeis.org
1, 0, 1, 10, 297, 13756, 925705, 85394646, 10351036465, 1596005408152
Offset: 0
Barbara Haas Margolius (margolius(AT)math.csuohio.edu)
A027468
9 times the triangular numbers A000217.
Original entry on oeis.org
0, 9, 27, 54, 90, 135, 189, 252, 324, 405, 495, 594, 702, 819, 945, 1080, 1224, 1377, 1539, 1710, 1890, 2079, 2277, 2484, 2700, 2925, 3159, 3402, 3654, 3915, 4185, 4464, 4752, 5049, 5355, 5670, 5994, 6327, 6669, 7020, 7380, 7749, 8127, 8514, 8910, 9315
Offset: 0
The first such self-conjugate partitions, corresponding to a(n)=1,2,3,4 are 3+3+3, 6+6+6+3+3+3, 9+9+9+6+6+6+3+3+3, 12+12+12+9+9+9+6+6+6+3+3+3. - _Augustine O. Munagi_, Dec 18 2008
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Augustine O. Munagi, Pairing conjugate partitions by residue classes, Discrete Math., Vol. 308, No. 12 (2008), pp. 2492-2501.
- Enrique Navarrete and Daniel Orellana, Finding Prime Numbers as Fixed Points of Sequences, arXiv:1907.10023 [math.NT], 2019.
- Leo Tavares, Illustration: Centroid Triangles.
- D. Zvonkine, Counting ramified coverings and intersection theory on Hurwitz spaces II (local structure of Hurwitz spaces and combinatorial results), Moscow Mathematical Journal, Vol. 7, No. 1 (2007), pp. 135-162.
- D. Zvonkine, Home Page.
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
- Index entries for two-way infinite sequences.
Cf.
A000459,
A002378,
A008585,
A024966,
A028895,
A028896,
A038764,
A033996,
A045943,
A046092,
A049598,
A059073,
A080855,
A134171,
A283394.
-
[9*n*(n+1)/2: n in [0..50]]; // Vincenzo Librandi, Dec 29 2012
-
[seq(9*binomial(n+1,2), n=0..50)]; # Zerinvary Lajos, Nov 24 2006
-
Table[(9/2)*n*(n+1), {n,0,50}] (* G. C. Greubel, Aug 22 2017 *)
-
a(n)=9*n*(n+1)/2
-
[9*binomial(n+1, 2) for n in (0..50)] # G. C. Greubel, May 20 2021
A059073
Card-matching numbers (Dinner-Diner matching numbers).
Original entry on oeis.org
1, 0, 1, 56, 13833, 6699824, 5691917785, 7785547001784, 16086070907249329, 47799861987366600992, 196500286135805946117201, 1082973554682091552092493880, 7797122311868240909226166565881
Offset: 0
Barbara Haas Margolius (margolius(AT)math.csuohio.edu)
There are 56 ways of achieving zero matches when there are 3 cards of each kind and 3 kinds of card so a(3)=56.
- F. N. David and D. E. Barton, Combinatorial Chance, Hafner, NY, 1962, Ch. 7 and Ch. 12.
- J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, pp. 174-178.
- R. P. Stanley, Enumerative Combinatorics Volume I, Cambridge University Press, 1997, p. 71.
- Michael De Vlieger, Table of n, a(n) for n = 0..100
- Shalosh B. Ekhad, Christoph Koutschan, and Doron Zeilberger, There are EXACTLY 1493804444499093354916284290188948031229880469556 Ways to Derange a Standard Deck of Cards (ignoring suits) [and many other such useful facts], arXiv:2101.10147 [math.CO], 2021.
- F. F. Knudsen and I. Skau, On the Asymptotic Solution of a Card-Matching Problem, Mathematics Magazine 69 (1996), 190-197.
- Barbara H. Margolius, Dinner-Diner Matching Probabilities
- Barbara H. Margolius, The Dinner-Diner Matching Problem, Mathematics Magazine, 76 (2003), 107-118.
- R. D. McKelvey and A. McLennan, The maximal number of regular totally mixed Nash equilibria, J. Economic Theory, 72 (1997), 411-425.
- S. G. Penrice, Derangements, permanents and Christmas presents, The American Mathematical Monthly 98(1991), 617-620.
- Raimundas Vidunas, MacMahon's master theorem and totally mixed Nash equilibria, arXiv preprint arXiv:1401.5400 [math.CO], 2014.
- Raimundas Vidunas, Counting derangements and Nash equilibria, Ann. Comb. 21, No. 1, 131-152 (2017).
- Index entries for sequences related to card matching
-
p := (x,k)->k!^2*sum(x^j/((k-j)!^2*j!),j=0..k); R := (x,n,k)->p(x,k)^n; f := (t,n,k)->sum(coeff(R(x,n,k),x,j)*(t-1)^j*(n*k-j)!,j=0..n*k); seq(f(0,n,3)/3!^n,n=0..18);
-
p[x_, k_] := k!^2*Sum[x^j/((k-j)!^2*j!), {j, 0, k}]; R[x_, n_, k_] := p[x, k]^n; f[t_, n_, k_] := Sum[Coefficient[R[x, n, k], x, j]*(t-1)^j*(n*k-j)!, {j, 0, n*k}]; Table[f[0, n, 3]/3!^n, {n, 0, 12}] (* Jean-François Alcover, May 21 2012, translated from Maple *)
A000316
Two decks each have n kinds of cards, 2 of each kind. The first deck is laid out in order. The second deck is shuffled and laid out next to the first. A match occurs if a card from the second deck is next to a card of the same kind from the first deck. a(n) is the number of ways of achieving no matches.
Original entry on oeis.org
1, 0, 4, 80, 4752, 440192, 59245120, 10930514688, 2649865335040, 817154768973824, 312426715251262464, 145060238642780180480, 80403174342119992692736, 52443098500204184915312640, 39764049487996490505336537088
Offset: 0
There are 80 ways of achieving zero matches when there are 2 cards of each kind and 3 kinds of card so a(3)=80.
Among the 24 (multiset) permutations of {1,1',2,2'}, only {2,2',1,1'}, {2',2,1,1'}, {2,2',1',1} and {2',2,1',1} have no fixed points, thus a(2)=4.
- F. N. David and D. E. Barton, Combinatorial Chance, Hafner, NY, 1962, Ch. 7 and Ch. 12.
- J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 187.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- T. D. Noe, Table of n, a(n) for n = 0..100
- F. F. Knudsen and I. Skau, On the Asymptotic Solution of a Card-Matching Problem, Mathematics Magazine 69 (1996), 190-197.
- B. H. Margolius, The Dinner-Diner Matching Problem, Mathematics Magazine, 76 (2003), 107-118.
- Barbara H. Margolius, Dinner-Diner Matching Probabilities
- L. I. Nicolaescu, Derangements and asymptotics of the Laplace transforms of large powers of a polynomial, New York J. Math. 10 (2004) 117-131.
- John Riordan and N. J. A. Sloane, Correspondence, 1974
- E. I. Vatutin, A. D. Belyshev, N. N. Nikitina, and M. O. Manzuk, Use of X-based diagonal fillings and ESODLS CMS schemes for enumeration of main classes of diagonal Latin squares, Telecommunications, 2023, No. 1, pp. 2-16, DOI: 10.31044/1684-2588-2023-0-1-2-16 (in Russian).
- Index entries for sequences related to card matching
-
p := (x,k)->k!^2*sum(x^j/((k-j)!^2*j!),j=0..k); R := (x,n,k)->p(x,k)^n; f := (t,n,k)->sum(coeff(R(x,n,k),x,j)*(t-1)^j*(n*k-j)!,j=0..n*k); seq(f(0,n,2), n=0..18);
-
(* b = A000459 *)
b[n_] := b[n] = Switch[n, 0, 1, 1, 0, 2, 1, _, n(2n-1) b[n-1] + 2n(n-1) b[n-2] - (2n-1)];
a[n_] := b[n] * 2^n;
Array[a, 14] (* Jean-François Alcover, Oct 30 2019 *)
-
a(n)=if(n==0, 1, round(2^(n/2+3/4)/Pi^.5*exp(-2)*n!*besselk(1/2+n,2^.5))<M. F. Hasler, Sep 27 2015
-
\\ Illustration of the multiset-fixed-point interpretation
count(n,c=ceil(vector(n,i,i)/2))=sum(k=1,n!,!setsearch(Set(ceil(Vec(numtoperm(n,k))/2)-c),0))
a(n) = count(2*n) \\ M. F. Hasler, Sep 30 2015
Formulae, more terms etc. from Barbara Haas Margolius (margolius(AT)math.csuohio.edu), Dec 22 2000
A374980
Number of multiset permutations of {1, 1, 2, 2, ..., n, n} with no fixed pair (j,j).
Original entry on oeis.org
1, 0, 5, 74, 2193, 101644, 6840085, 630985830, 76484389121, 11792973495032, 2254432154097861, 523368281765512930, 145044815855963403985, 47302856057098946329284, 17933275902554972391519893, 7820842217155394547769452734, 3887745712142302082441578104705
Offset: 0
a(2) = 5: 1212, 1221, 2112, 2121, 2211.
-
a:= proc(n) option remember; `if`(n<3, [1, 0, 5][n+1],
(n-1)*((2*n+1)*a(n-1)+(4*n-3)*a(n-2)+2*(n-2)*a(n-3)))
end:
seq(a(n), n=0..16);
A372307
Square array read by antidiagonals: T(n,k) is the number of derangements of a multiset comprising n repeats of a k-element set.
Original entry on oeis.org
1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 2, 1, 0, 1, 1, 9, 10, 1, 0, 1, 1, 44, 297, 56, 1, 0, 1, 1, 265, 13756, 13833, 346, 1, 0, 1, 1, 1854, 925705, 6699824, 748521, 2252, 1, 0, 1, 1, 14833, 85394646, 5691917785, 3993445276, 44127009, 15184, 1, 0, 1
Offset: 0
Square array T(n,k) begins:
1, 1, 1, 1, 1, 1, ...
1, 0, 1, 2, 9, 44, ...
1, 0, 1, 10, 297, 13756, ...
1, 0, 1, 56, 13833, 6699824, ...
1, 0, 1, 346, 748521, 3993445276, ...
1, 0, 1, 2252, 44127009, 2671644472544, ...
1, 0, 1, 15184, 2750141241, 1926172117389136, ...
1, 0, 1, 104960, 178218782793, 1463447061709156064, ...
- Jeremy Tan, Antidiagonals n = 0..32, flattened
- Shalosh B. Ekhad, Christoph Koutschan and Doron Zeilberger, There are EXACTLY 1493804444499093354916284290188948031229880469556 Ways to Derange a Standard Deck of Cards (ignoring suits) [and many other such useful facts], arXiv:2101.10147 [math.CO], 2021.
- S. Even and J. Gillis, Derangements and Laguerre polynomials, Mathematical Proceedings of the Cambridge Philosophical Society, Volume 79, Issue 1, January 1976, pp. 135-143.
- B. H. Margolius, The Dinner-Diner Matching Problem, Mathematics Magazine, 76 (2003), pp. 107-118.
- Jeremy Tan, Python program
- Raimundas Vidunas, MacMahon's master theorem and totally mixed Nash equilibria, arXiv:1401.5400 [math.CO], 2014.
- Raimundas Vidunas, Counting derangements and Nash equilibria, Ann. Comb. 21, No. 1, 131-152 (2017).
- Index entries for sequences related to card matching
-
A:= (n, k)-> (-1)^(n*k)*int(exp(-x)*orthopoly[L](n, x)^k, x=0..infinity):
seq(seq(A(n, d-n), n=0..d), d=0..10); # Alois P. Heinz, Aug 27 2024
-
Table[Abs[Integrate[Exp[-x] LaguerreL[n, x]^(s-n), {x, 0, Infinity}]], {s, 0, 9}, {n, 0, s}] // Flatten
-
# See link.
A275801
Number of alternating permutations of the multiset {1,1,2,2,...,n,n}.
Original entry on oeis.org
1, 0, 1, 4, 53, 936, 25325, 933980, 45504649, 2824517520, 217690037497, 20394614883316, 2282650939846781, 300814135522967736, 46103574973075123877, 8130996533576437261772, 1635028654501420083152785, 371853339350614571322913824, 94969025880924845123887493233
Offset: 0
- Max Alekseyev, Table of n, a(n) for n = 0..70
- Wikipedia, Alternating permutation.
- hkju et al., Number of updown sequences of 1,1,2,2,...,n,n, Mathoverflow, 2016.
Cf.
A000111,
A001250,
A000459,
A004075,
A005799,
A114938,
A137729,
A137730,
A137737,
A137749,
A275829.
A275829
Number of weakly alternating permutations of the multiset {1,1,2,2,...,n,n}.
Original entry on oeis.org
1, 1, 2, 12, 140, 2564, 68728, 2539632, 123686800, 7677924688, 591741636128, 55438330474944, 6204888219697856, 817697605612952384, 125322509904814743424, 22102340129003429880576, 4444468680409243484516608, 1010802175212828388101900544, 258152577318424951261637001728
Offset: 0
Cf.
A000111,
A001250,
A000459,
A004075,
A005799,
A114938,
A137729,
A137730,
A137737,
A137749,
A275801.
A337303
Number of X-based filling of diagonals in a diagonal Latin square of order n.
Original entry on oeis.org
1, 1, 0, 0, 96, 480, 57600, 403200, 191600640, 1724405760, 1597368729600, 17571056025600, 28378507272192000, 368920594538496000, 952903592436341145600, 14293553886545117184000, 55442575636536644075520000, 942523785821122949283840000, 5231730206388249282710863872000
Offset: 0
One of the 96 X-based fillings of diagonals of a diagonal Latin square for order n=4:
1 . . 0
. 0 1 .
. 3 2 .
2 . . 3
- Andrew Howroyd, Table of n, a(n) for n = 0..100
- S. Kochemazov, O. Zaikin, E. Vatutin E., and A. Belyshev, Enumerating Diagonal Latin Squares of Order Up to 9, Journal of Integer Sequences. Vol. 23. Iss. 1. 2020. Article 20.1.2.
- E. I. Vatutin, About the number of X-based fillings of diagonals in a diagonal Latin squares of orders 1-15 (in Russian).
- E. I. Vatutin, A. D. Belyshev, N. N. Nikitina, and M. O. Manzuk, Use of X-based diagonal fillings and ESODLS CMS schemes for enumeration of main classes of diagonal Latin squares, Telecommunications, 2023, No. 1, pp. 2-16, DOI: 10.31044/1684-2588-2023-0-1-2-16 (in Russian).
- Index entries for sequences related to Latin squares and rectangles.
-
\\ here b(n) is A000459.
b(n) = {sum(m=0, n, sum(k=0, n-m, (-1)^k * binomial(n, k) * binomial(n-k, m) * 2^(2*k+m-n) * (2*n-2*m-k)! )); }
a(n) = {2^(n\2) * b(n\2) * n!} \\ Andrew Howroyd, Mar 26 2023
a(0)=1 prepended and terms a(16) and beyond from
Andrew Howroyd, Mar 26 2023
A124007
Number of permutations of n distinct letters (ABCD...) each of which appears thrice with n-3 fixed points.
Original entry on oeis.org
0, 0, 54, 216, 540, 1080, 1890, 3024, 4536, 6480, 8910, 11880, 15444, 19656, 24570
Offset: 0
Maple produces the following triangle - the entries in quotes give the sequence:
1
"0", 0, 0, 1
1, 0, 9, "0", 9, 0, 1
56, 216, 378, 435, 324, 189, "54", 27, 0, 1
13833, 49464, 84510, 90944, 69039, 38448, 16476, 5184, 1431, "216", 54, 0, 1
6699824, 23123880, 38358540, 40563765, 30573900, 17399178, 7723640, 2729295, 776520, 180100, 33372, 5355, "540", 90, 0, 1
etc...
-
p := (x, k)->k!^2*sum(x^j/((k-j)!^2*j!), j=0..k); R := (x, n, k)->p(x, k)^n; f := (t, n, k)->sum(coeff(R(x, n, k), x, j)*(t-1)^j*(n*k-j)!, j=0..n*k); for n from 0 to 6 do seq(coeff(f(t, n, 3), t, m)/3!^n, m=0..3*n); od;
Showing 1-10 of 16 results.
Comments