cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 16 results. Next

A059072 Duplicate of A000459.

Original entry on oeis.org

1, 0, 1, 10, 297, 13756, 925705, 85394646, 10351036465, 1596005408152
Offset: 0

Views

Author

Barbara Haas Margolius (margolius(AT)math.csuohio.edu)

Keywords

A027468 9 times the triangular numbers A000217.

Original entry on oeis.org

0, 9, 27, 54, 90, 135, 189, 252, 324, 405, 495, 594, 702, 819, 945, 1080, 1224, 1377, 1539, 1710, 1890, 2079, 2277, 2484, 2700, 2925, 3159, 3402, 3654, 3915, 4185, 4464, 4752, 5049, 5355, 5670, 5994, 6327, 6669, 7020, 7380, 7749, 8127, 8514, 8910, 9315
Offset: 0

Views

Author

Keywords

Comments

Staggered diagonal of triangular spiral in A051682, between (0,1,11) spoke and (0,8,25) spoke. - Paul Barry, Mar 15 2003
Number of permutations of n distinct letters (ABCD...) each of which appears thrice with n-2 fixed points. - Zerinvary Lajos, Oct 15 2006
Number of n permutations (n>=2) of 4 objects u, v, z, x with repetition allowed, containing n-2=0 u's. Example: if n=2 then n-2 =zero (0) u, a(1)=9 because we have vv, zz, xx, vx, xv, zx, xz, vz, zv. A027465 formatted as a triangular array: diagonal: 9, 27, 54, 90, 135, 189, 252, 324, ... . - Zerinvary Lajos, Aug 06 2008
a(n) is also the least weight of self-conjugate partitions having n different parts such that each part is a multiple of 3. - Augustine O. Munagi, Dec 18 2008
Also sequence found by reading the line from 0, in the direction 0, 9, ..., and the same line from 0, in the direction 0, 27, ..., in the square spiral whose vertices are the generalized hendecagonal numbers A195160. Axis perpendicular to A195147 in the same spiral. - Omar E. Pol, Sep 18 2011
Sum of the numbers from 4*n to 5*n. - Wesley Ivan Hurt, Nov 01 2014

Examples

			The first such self-conjugate partitions, corresponding to a(n)=1,2,3,4 are 3+3+3, 6+6+6+3+3+3, 9+9+9+6+6+6+3+3+3, 12+12+12+9+9+9+6+6+6+3+3+3. - _Augustine O. Munagi_, Dec 18 2008
		

Crossrefs

Programs

  • Magma
    [9*n*(n+1)/2: n in [0..50]]; // Vincenzo Librandi, Dec 29 2012
    
  • Maple
    [seq(9*binomial(n+1,2), n=0..50)]; # Zerinvary Lajos, Nov 24 2006
  • Mathematica
    Table[(9/2)*n*(n+1), {n,0,50}] (* G. C. Greubel, Aug 22 2017 *)
  • PARI
    a(n)=9*n*(n+1)/2
    
  • Sage
    [9*binomial(n+1, 2) for n in (0..50)] # G. C. Greubel, May 20 2021

Formula

Numerators of sequence a[n, n-2] in (a[i, j])^2 where a[i, j] = binomial(i-1, j-1)/2^(i-1) if j<=i, 0 if j>i.
a(n) = (9/2)*n*(n+1).
a(n) = 9*C(n, 1) + 9*C(n, 2) (binomial transform of (0, 9, 9, 0, 0, ...)). - Paul Barry, Mar 15 2003
G.f.: 9*x/(1-x)^3.
a(-1-n) = a(n).
a(n) = 9*C(n+1,2), n>=0. - Zerinvary Lajos, Aug 06 2008
a(n) = a(n-1) + 9*n (with a(0)=0). - Vincenzo Librandi, Nov 19 2010
a(n) = A060544(n+1) - 1. - Omar E. Pol, Oct 03 2011
a(n) = A218470(9*n+8). - Philippe Deléham, Mar 27 2013
E.g.f.: (9/2)*x*(x+2)*exp(x). - G. C. Greubel, Aug 22 2017
a(n) = A060544(n+1) - 1. See Centroid Triangles illustration. - Leo Tavares, Dec 27 2021
From Amiram Eldar, Feb 15 2022: (Start)
Sum_{n>=1} 1/a(n) = 2/9.
Sum_{n>=1} (-1)^(n+1)/a(n) = 4*log(2)/9 - 2/9. (End)
From Amiram Eldar, Feb 21 2023: (Start)
Product_{n>=1} (1 - 1/a(n)) = -(9/(2*Pi))*cos(sqrt(17)*Pi/6).
Product_{n>=1} (1 + 1/a(n)) = 9*sqrt(3)/(4*Pi). (End)

Extensions

More terms from Patrick De Geest, Oct 15 1999

A059073 Card-matching numbers (Dinner-Diner matching numbers).

Original entry on oeis.org

1, 0, 1, 56, 13833, 6699824, 5691917785, 7785547001784, 16086070907249329, 47799861987366600992, 196500286135805946117201, 1082973554682091552092493880, 7797122311868240909226166565881
Offset: 0

Views

Author

Barbara Haas Margolius (margolius(AT)math.csuohio.edu)

Keywords

Comments

A deck has n kinds of cards, 3 of each kind. The deck is shuffled and dealt in to n hands with 3 cards each. A match occurs for every card in the j-th hand of kind j. A(n) is the number of ways of achieving no matches. The probability of no matches is A(n)/((3n)!/3!^n).
Number of fixed-point-free permutations of n distinct letters (ABCD...), each of which appears thrice. If there is only one letter of each type we get A000166. - Zerinvary Lajos, Oct 15 2006
a(n) is the maximal number of totally mixed Nash equilibria in games of n players, each with 4 pure options. - Raimundas Vidunas, Jan 22 2014

Examples

			There are 56 ways of achieving zero matches when there are 3 cards of each kind and 3 kinds of card so a(3)=56.
		

References

  • F. N. David and D. E. Barton, Combinatorial Chance, Hafner, NY, 1962, Ch. 7 and Ch. 12.
  • J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, pp. 174-178.
  • R. P. Stanley, Enumerative Combinatorics Volume I, Cambridge University Press, 1997, p. 71.

Crossrefs

Programs

  • Maple
    p := (x,k)->k!^2*sum(x^j/((k-j)!^2*j!),j=0..k); R := (x,n,k)->p(x,k)^n; f := (t,n,k)->sum(coeff(R(x,n,k),x,j)*(t-1)^j*(n*k-j)!,j=0..n*k); seq(f(0,n,3)/3!^n,n=0..18);
  • Mathematica
    p[x_, k_] := k!^2*Sum[x^j/((k-j)!^2*j!), {j, 0, k}]; R[x_, n_, k_] := p[x, k]^n; f[t_, n_, k_] := Sum[Coefficient[R[x, n, k], x, j]*(t-1)^j*(n*k-j)!, {j, 0, n*k}]; Table[f[0, n, 3]/3!^n, {n, 0, 12}] (* Jean-François Alcover, May 21 2012, translated from Maple *)

Formula

G.f.: Sum_{j=0..n*k} coeff(R(x, n, k), x, j)*(t-1)^j*(n*k-j)! where n is the number of kinds of cards, k is the number of cards of each kind (3 in this case) and R(x, n, k) is the rook polynomial given by R(x, n, k) = k!^2*Sum(x^j/((k-j)!^2*j!))^n (see Stanley or Riordan). coeff(R(x, n, k), x, j) indicates the coefficient for x^j of the rook polynomial.

A000316 Two decks each have n kinds of cards, 2 of each kind. The first deck is laid out in order. The second deck is shuffled and laid out next to the first. A match occurs if a card from the second deck is next to a card of the same kind from the first deck. a(n) is the number of ways of achieving no matches.

Original entry on oeis.org

1, 0, 4, 80, 4752, 440192, 59245120, 10930514688, 2649865335040, 817154768973824, 312426715251262464, 145060238642780180480, 80403174342119992692736, 52443098500204184915312640, 39764049487996490505336537088
Offset: 0

Views

Author

Keywords

Comments

Each deck contains 2n cards.
The probability of no matches is a(n)/(2n)!.
n couples meet for a party and they exchange gifts. Each of the 2n writes their name on a piece of paper and puts it into a hat. They take turns drawing names and give their gift to the person whose name they drew. If anyone draws either their own name or the name of their partner, everyone puts the name they have drawn back into the hat and everyone draws anew. a(n) is the number of different permissible drawings. - Dan Dima, Dec 17 2006
(2n)! / a(n) is the expected number of deck shuffles until no matches occur. a(n) / (2n)! is the probability for a permissible drawing to be achieved. (2n)! / a(n) is the expected number of drawings before a permissible drawing is achieved. As n goes to infinity (2n)! / a(n) will strictly decrease very slowly to e^2 ~ 7.38906 (starting from n > 2) - Dan Dima, Dec 17 2006
a(n) equals the permanent of the (2n)X(2n) matrix with 0's along the main diagonal and the antidiagonal, and 1's everywhere else. - John M. Campbell, Jul 11 2011
Also, number of permutations p of (1,...,2n) such that round(p(k)/2) != round(k/2) for all k=1,...,2n (where half-integers are rounded up). - M. F. Hasler, Sep 30 2015

Examples

			There are 80 ways of achieving zero matches when there are 2 cards of each kind and 3 kinds of card so a(3)=80.
Among the 24 (multiset) permutations of {1,1',2,2'}, only {2,2',1,1'}, {2',2,1,1'}, {2,2',1',1} and {2',2,1',1} have no fixed points, thus a(2)=4.
		

References

  • F. N. David and D. E. Barton, Combinatorial Chance, Hafner, NY, 1962, Ch. 7 and Ch. 12.
  • J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 187.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Maple
    p := (x,k)->k!^2*sum(x^j/((k-j)!^2*j!),j=0..k); R := (x,n,k)->p(x,k)^n; f := (t,n,k)->sum(coeff(R(x,n,k),x,j)*(t-1)^j*(n*k-j)!,j=0..n*k); seq(f(0,n,2), n=0..18);
  • Mathematica
    (* b = A000459 *)
    b[n_] := b[n] = Switch[n, 0, 1, 1, 0, 2, 1, _, n(2n-1) b[n-1] + 2n(n-1) b[n-2] - (2n-1)];
    a[n_] := b[n] * 2^n;
    Array[a, 14] (* Jean-François Alcover, Oct 30 2019 *)
  • PARI
    a(n)=if(n==0, 1, round(2^(n/2+3/4)/Pi^.5*exp(-2)*n!*besselk(1/2+n,2^.5))<M. F. Hasler, Sep 27 2015
    
  • PARI
    \\ Illustration of the multiset-fixed-point interpretation
    count(n,c=ceil(vector(n,i,i)/2))=sum(k=1,n!,!setsearch(Set(ceil(Vec(numtoperm(n,k))/2)-c),0))
    a(n) = count(2*n) \\ M. F. Hasler, Sep 30 2015

Formula

a(n) = A000459(n)*2^n.
G.f.: Sum_{j=0..n*k} coeff(R(x, n, k), x, j)*(-1)^j*(n*k-j)! where n is the number of kinds of cards, k is the number of cards of each kind (2 in this case) and R(x, n, k) is the rook polynomial given by R(x, n, k)=(k!^2*Sum_{j=0..k} x^j/((k-j)!^2*j!))^n (see Riordan). coeff(R(x, n, k), x, j) indicates the coefficient for x^j of the rook polynomial.
From Dan Dima, Dec 17 2006: (Start)
a(n) = n! * Sum_{a,b >= 0, a+b <= n} (-1)^b * 2^(a+2*b) * (2*n-2*a-b)! / (a! * b! * (n-a-b)!).
a(n) = n * a(n-1) + n! * 4^n * Sum_{a=0..n} (-1)^a / (a! * 2^a). (End)
a(n) = 2^n * round(2^(n/2 + 3/4)*Pi^(-1/2)*exp(-2)*n!*BesselK(1/2+n,2^(1/2))) for n > 0. - Mark van Hoeij, Oct 30 2011
Recurrence: (2*n-3)*a(n) = 2*(n-1)*(2*n-1)^2*a(n-1) + 4*(n-1)*(2*n-3)*a(n-2) - 16*(n-2)*(n-1)*(2*n-1)*a(n-3). - Vaclav Kotesovec, Aug 07 2013
From Peter Bala, Jul 07 2014: (Start)
a(n) = Integral_{x>=0} exp(-x)*(x^2 - 4*x + 2)^n dx. Cf. A000166(n) = Integral_{x>=0} exp(-x)*(x - 1)^n dx.
Asymptotic: a(n) ~ (2*n)!*exp(-2)*( 1 - 1/(2*n) - 23/(96*n^2) + O(1/n^3) ). See Nicolaescu. (End)

Extensions

Formulae, more terms etc. from Barbara Haas Margolius (margolius(AT)math.csuohio.edu), Dec 22 2000
Edited by M. F. Hasler, Sep 27 2015 and N. J. A. Sloane, Oct 02 2015
a(0)=1 prepended by Andrew Howroyd, Oct 09 2020

A374980 Number of multiset permutations of {1, 1, 2, 2, ..., n, n} with no fixed pair (j,j).

Original entry on oeis.org

1, 0, 5, 74, 2193, 101644, 6840085, 630985830, 76484389121, 11792973495032, 2254432154097861, 523368281765512930, 145044815855963403985, 47302856057098946329284, 17933275902554972391519893, 7820842217155394547769452734, 3887745712142302082441578104705
Offset: 0

Views

Author

Alois P. Heinz, Aug 05 2024

Keywords

Comments

Inverse binomial transform of A000680.

Examples

			a(2) = 5: 1212, 1221, 2112, 2121, 2211.
		

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; `if`(n<3, [1, 0, 5][n+1],
         (n-1)*((2*n+1)*a(n-1)+(4*n-3)*a(n-2)+2*(n-2)*a(n-3)))
        end:
    seq(a(n), n=0..16);

Formula

a(n) = Sum_{j=0..n} (-1)^j*binomial(n,j)*A000680(n-j).
a(n) = A116218(n)/2^n.
a(n) mod 2 = 1 - (n mod 2) = A059841(n).

A372307 Square array read by antidiagonals: T(n,k) is the number of derangements of a multiset comprising n repeats of a k-element set.

Original entry on oeis.org

1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 2, 1, 0, 1, 1, 9, 10, 1, 0, 1, 1, 44, 297, 56, 1, 0, 1, 1, 265, 13756, 13833, 346, 1, 0, 1, 1, 1854, 925705, 6699824, 748521, 2252, 1, 0, 1, 1, 14833, 85394646, 5691917785, 3993445276, 44127009, 15184, 1, 0, 1
Offset: 0

Views

Author

Jeremy Tan, Apr 26 2024

Keywords

Comments

A deck has k suits of n cards each. The deck is shuffled and dealt into k hands of n cards each. A match occurs for every card in the i-th hand of suit i. T(n,k) is the number of ways of achieving no matches. The probability of no matches is T(n,k)/((n*k)!/n!^k).
T(n,k) is the maximal number of totally mixed Nash equilibria in games of k players, each with n+1 pure options.

Examples

			Square array T(n,k) begins:
  1, 1, 1,      1,            1,                   1, ...
  1, 0, 1,      2,            9,                  44, ...
  1, 0, 1,     10,          297,               13756, ...
  1, 0, 1,     56,        13833,             6699824, ...
  1, 0, 1,    346,       748521,          3993445276, ...
  1, 0, 1,   2252,     44127009,       2671644472544, ...
  1, 0, 1,  15184,   2750141241,    1926172117389136, ...
  1, 0, 1, 104960, 178218782793, 1463447061709156064, ...
		

Crossrefs

Columns 0-4 give A000012, A000007, A000012, A000172, A371252.
Main diagonal gives A375778.

Programs

  • Maple
    A:= (n, k)-> (-1)^(n*k)*int(exp(-x)*orthopoly[L](n, x)^k, x=0..infinity):
    seq(seq(A(n, d-n), n=0..d), d=0..10);  # Alois P. Heinz, Aug 27 2024
  • Mathematica
    Table[Abs[Integrate[Exp[-x] LaguerreL[n, x]^(s-n), {x, 0, Infinity}]], {s, 0, 9}, {n, 0, s}] // Flatten
  • Python
    # See link.

Formula

T(n,k) = (-1)^(n*k) * Integral_{x=0..oo} exp(-x)*L_n(x)^k dx, where L_n(x) is the Laguerre polynomial of degree n (Even and Gillis).
T(n,k) ~ A089759(n,k)/exp(n).

A275801 Number of alternating permutations of the multiset {1,1,2,2,...,n,n}.

Original entry on oeis.org

1, 0, 1, 4, 53, 936, 25325, 933980, 45504649, 2824517520, 217690037497, 20394614883316, 2282650939846781, 300814135522967736, 46103574973075123877, 8130996533576437261772, 1635028654501420083152785, 371853339350614571322913824, 94969025880924845123887493233
Offset: 0

Views

Author

Max Alekseyev, Aug 09 2016

Keywords

Comments

Number of permutations (p(1),...,p(2n)) of {1,1,2,2,...,n,n} satisfying p(1) < p(2) > p(3) < ... < p(2n).
a(n) <= A005799(n) <= A275829(n).

Crossrefs

A275829 Number of weakly alternating permutations of the multiset {1,1,2,2,...,n,n}.

Original entry on oeis.org

1, 1, 2, 12, 140, 2564, 68728, 2539632, 123686800, 7677924688, 591741636128, 55438330474944, 6204888219697856, 817697605612952384, 125322509904814743424, 22102340129003429880576, 4444468680409243484516608, 1010802175212828388101900544, 258152577318424951261637001728
Offset: 0

Views

Author

Max Alekseyev, Aug 11 2016

Keywords

Comments

Number of permutations (p(1),...,p(2n)) of {1,1,2,2,...,n,n} satisfying p(1) <= p(2) >= p(3) <= p(4) >= p(5) <= ... <= p(2n).
a(n) >= A005799(n) >= A275801(n).

Crossrefs

A337303 Number of X-based filling of diagonals in a diagonal Latin square of order n.

Original entry on oeis.org

1, 1, 0, 0, 96, 480, 57600, 403200, 191600640, 1724405760, 1597368729600, 17571056025600, 28378507272192000, 368920594538496000, 952903592436341145600, 14293553886545117184000, 55442575636536644075520000, 942523785821122949283840000, 5231730206388249282710863872000
Offset: 0

Views

Author

Eduard I. Vatutin, Aug 22 2020

Keywords

Comments

Used for getting strong canonical forms (SCFs) of the diagonal Latin squares and for fast enumerating of the diagonal Latin squares based on equivalence classes.

Examples

			One of the 96 X-based fillings of diagonals of a diagonal Latin square for order n=4:
1 . . 0
. 0 1 .
. 3 2 .
2 . . 3
		

Crossrefs

Programs

  • PARI
    \\ here b(n) is A000459.
    b(n) = {sum(m=0, n, sum(k=0, n-m, (-1)^k * binomial(n, k) * binomial(n-k, m) * 2^(2*k+m-n) * (2*n-2*m-k)! )); }
    a(n) = {2^(n\2) * b(n\2) * n!} \\ Andrew Howroyd, Mar 26 2023

Formula

a(n) = A337302(n)*n!.
a(n) = n!*A000316(floor(n/2)). - Andrew Howroyd, Mar 26 2023

Extensions

a(0)=1 prepended and terms a(16) and beyond from Andrew Howroyd, Mar 26 2023

A124007 Number of permutations of n distinct letters (ABCD...) each of which appears thrice with n-3 fixed points.

Original entry on oeis.org

0, 0, 54, 216, 540, 1080, 1890, 3024, 4536, 6480, 8910, 11880, 15444, 19656, 24570
Offset: 0

Views

Author

Zerinvary Lajos, Nov 01 2006

Keywords

Examples

			Maple produces the following triangle - the entries in quotes give the sequence:
1
"0", 0, 0, 1
1, 0, 9, "0", 9, 0, 1
56, 216, 378, 435, 324, 189, "54", 27, 0, 1
13833, 49464, 84510, 90944, 69039, 38448, 16476, 5184, 1431, "216", 54, 0, 1
6699824, 23123880, 38358540, 40563765, 30573900, 17399178, 7723640, 2729295, 776520, 180100, 33372, 5355, "540", 90, 0, 1
etc...
		

Crossrefs

Programs

  • Maple
    p := (x, k)->k!^2*sum(x^j/((k-j)!^2*j!), j=0..k); R := (x, n, k)->p(x, k)^n; f := (t, n, k)->sum(coeff(R(x, n, k), x, j)*(t-1)^j*(n*k-j)!, j=0..n*k); for n from 0 to 6 do seq(coeff(f(t, n, 3), t, m)/3!^n, m=0..3*n); od;
Showing 1-10 of 16 results. Next