cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A059083 Number of T_0-antichains on a labeled n-set.

Original entry on oeis.org

2, 3, 3, 8, 96, 6373, 7725703, 2414518872815, 56130437161078967568912
Offset: 0

Views

Author

Vladeta Jovovic, Goran Kilibarda, Jan 06 2001

Keywords

Comments

An antichain on a set is a T_0-antichain if for every two distinct points of the set there exists a member of the antichain containing one but not the other point.

Examples

			a(0) = 1 + 1, a(1) = 1 + 2, a(2) = 2 + 1, a(3) = 6 + 2, a(4) = 12 + 52 + 25 + 6 + 1, a(5) = 520 + 1770 + 2086 + 1370 + 490 + 115 + 20 + 2.
		

References

  • V. Jovovic, G. Kilibarda, On enumeration of the class of all monotone Boolean functions, in preparation.

Crossrefs

Formula

a(n) = Sum_{m=0..binomial(n, floor(n/2))} A(m, n), where A(m, n) is number of m-element T_0-antichains on a labeled n-set. Cf. A059080.
a(n) = column sums of A059080.

Extensions

More terms from Vladeta Jovovic, Nov 28 2003