A059086 Number of labeled T_0-hypergraphs with n distinct hyperedges (empty hyperedge included).
2, 5, 30, 18236, 2369751620679, 5960531437867327674541054610203768, 479047836152505670895481842190009123676957243077039693903470634823732317120870101036348
Offset: 0
Examples
a(2)=30; There are 30 labeled T_0-hypergraphs with 2 distinct hyperedges (empty hyperedge included): 1 1-node hypergraph, 5 2-node hypergraphs, 12 3-node hypergraphs and 12 4-node hypergraphs. a(3) = (1/3!)*(2*[2!*e]-3*[4!*e]+[8!*e]) = (1/3!)*(2*5-3*65+109601) = 18236, where [k!*e] := floor (k!*exp(1)).
Programs
-
Maple
with(combinat): Digits := 1000: for n from 0 to 8 do printf(`%d,`,(1/n!)*sum(stirling1(n, k)*floor((2^k)!*exp(1)), k=0..n)) od:
Formula
a(n) = (1/n!)*Sum_{k = 0..n} stirling1(n, k)*floor((2^k)!*exp(1)).
Extensions
More terms from James Sellers, Jan 24 2001
Comments