A059089 Number of labeled T_0-hypergraphs with n distinct hyperedges (empty hyperedge excluded).
2, 3, 27, 18209, 2369751602470, 5960531437867327674538684858601298, 479047836152505670895481842190009123676957243077039687942939196956404642582185242435050
Offset: 0
Examples
a(2)=27; There are 27 labeled T_0-hypergraphs with 2 distinct hyperedges (empty hyperedge excluded): 3 2-node hypergraphs, 12 3-node hypergraphs and 12 4-node hypergraphs. a(3) = (1/3!)*(-6*[1!*e]+11*[2!*e]-6*[4!*e]+[8!*e]) = (1/3!)*(-6*2+11*5-6*65+109601) = 18209, where [k!*e] := floor(k!*exp(1)).
Programs
-
Maple
with(combinat): Digits := 1000: for n from 0 to 8 do printf(`%d,`,(1/n!)*sum(stirling1(n+1,k)*floor((2^(k-1))!*exp(1)), k=0..n+1)) od:
Formula
Extensions
More terms from James Sellers, Jan 24 2001
Comments