A059097 Numbers n such that the binomial coefficient C(2n,n) is not divisible by the square of an odd prime.
0, 1, 2, 3, 4, 6, 7, 9, 10, 11, 12, 21, 22, 28, 29, 30, 31, 36, 37, 54, 55, 57, 58, 110, 171, 784, 786
Offset: 1
Examples
C(12,6)=924, which is not divisible by the square of an odd prime, so 6 is in the sequence.
References
- F. Q. Gouvea, p-Adic Numbers, Springer-Verlag, 1993; see p. 100.
- R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics, first ed, chap 5, prob 96.
- R. K. Guy, Unsolved problems in Number Theory, section B33.
Links
- A. Granville and O. Ramaré, Explicit bounds on exponential sums and the scarcity of squarefree binomial coefficients, Mathematika 43 (1996), 73-107, [DOI].
Crossrefs
Programs
-
Maple
filter:= proc(n) andmap(t -> t[1] = 2 or t[2] = 1, ifactors(binomial(2*n,n))[2]) end proc: select(filter, [$0..2081]); # Robert Israel, Sep 18 2017
-
Mathematica
l = {}; Do[m = Binomial[2n, n]; While[EvenQ[m], m = m/2]; If[MoebiusMu[m] != 0, l = {l, n}], {n, 1000}]; Flatten[l] (* Alonso del Arte, Nov 11 2005 *) (* The following is an implementation of David W. Wilson's algorithm: *) expoPF[p_, n_] := Module[{s, x}, x = n; s = 0; While[x > 0, x = Floor[x/p]; s = s + x]; s] expoP2nCn[p_, n_] := expoPF[p, 2*n] - 2*expoPF[p, n] goodQ[ n_ ] := TrueQ[ Module[ {flag, i}, flag = True; i = 2; While[ flag && Prime[ i ] < n, If[ expoP2nCn[ Prime[ i ], n ] > 1, flag = False ]; i++ ]; flag ] ] Select[ Range[ 1000 ], goodQ[ # ] & ] (* Alonso del Arte, Nov 11 2005 *)
Extensions
No other terms for n<=157430. - Naohiro Nomoto, May 12 2002
No other terms for n<=2^31 - 1. - Jack Brennen, Nov 21 2005
Comments