A059117 Square array of lambda(k,n), where lambda is defined in A055203. Number of ways of placing n identifiable positive intervals with a total of exactly k starting and/or finishing points.
1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 6, 1, 0, 0, 0, 0, 6, 24, 1, 0, 0, 0, 0, 0, 114, 78, 1, 0, 0, 0, 0, 0, 180, 978, 240, 1, 0, 0, 0, 0, 0, 90, 4320, 6810, 726, 1, 0, 0, 0, 0, 0, 0, 8460, 63540, 43746, 2184, 1, 0, 0, 0, 0, 0, 0, 7560, 271170, 774000, 271194, 6558, 1
Offset: 0
Examples
Rows are: 1,0,0,0,0,0,....; 0,0,1,0,0,0,....; 0,0,1,6,6,0,....; 0,0,1,24,114,180,.... etc.
Crossrefs
Programs
-
Mathematica
A[ n_, k_] := If[n < 1 || k < 1, Boole[n == 0 && k == 0], n! k! Coefficient[ Normal[ Series[ Sum[ Exp[-x z] (x z)^m/m! Exp[y z m (m - 1)/2], {m, 0, n}], {z, 0, n + k}]], x^n y^k z^(n + k)]]; (* Michael Somos, Jul 17 2019 *)
Formula
lambda(k, n) = (lambda(k - 2, n - 1) + 2*lambda(k - 2, n - 1) + lambda(k - 2, n - 1))*k*(k - 1)/2 starting with lambda(k, 0) = 1 if k = 0 but = 0 otherwise. lambda(k, n) = sum_{j=0..k} (-1)^(k + j) * C(k, j) * ((j - 1)*j/2)^n.