cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A059123 Number of homeomorphically irreducible rooted trees (also known as series-reduced rooted trees, or rooted trees without nodes of degree 2) with n >= 1 nodes.

Original entry on oeis.org

0, 1, 1, 0, 2, 2, 4, 6, 12, 20, 39, 71, 137, 261, 511, 995, 1974, 3915, 7841, 15749, 31835, 64540, 131453, 268498, 550324, 1130899, 2330381, 4813031, 9963288, 20665781, 42947715, 89410092, 186447559, 389397778, 814447067, 1705775653
Offset: 0

Views

Author

Wolfdieter Lang, Jan 09 2001

Keywords

Comments

Essentially the same as A001679. - Eric W. Weisstein, Mar 25 2022

Examples

			G.f. = x + x^2 + 2*x^4 + 2*x^5 + 4*x^6 + 6*x^7 + 12*x^8 + 20*x^9 + ...
		

References

  • F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, NY, 1973, p. 62, Eq. (3.3.9).

Crossrefs

Cf. A001679.
Cf. A000055 (trees by nodes), A000014 (homeomorphically irreducible trees by nodes), A000669 (homeomorphically irreducible planted trees by leaves), A000081 (rooted trees by nodes).
Cf. A246403.

Programs

  • Maple
    with(powseries): with(combstruct): n := 30: Order := n+3: sys := {B = Prod(C,Z), S = Set(B,1 <= card), C = Union(Z,S)}:
    G001678 := (convert(gfseries(sys,unlabeled,x)[S(x)], polynom)) * x^2: G0temp := G001678 + x^2:
    G059123 := G0temp / x + G0temp - (G0temp^2+eval(G0temp,x=x^2))/(2*x): A059123 := 0,seq(coeff(G059123,x^i),i=1..n); # Ulrich Schimke (ulrschimke(AT)aol.com)
  • Mathematica
    terms = 36; (* F = G001678 *) F[] = 0; Do[F[x] = (x^2/(1 + x))*Exp[Sum[ F[x^k]/(k*x^k), {k, 1, j}]] + O[x]^j // Normal, {j, 1, terms + 1}];
    G[x_] = 1 + ((1 + x)/x)*F[x] - (F[x]^2 + F[x^2])/(2*x) + O[x]^terms;
    CoefficientList[G[x] - 1, x] (* Jean-François Alcover, May 25 2012, updated Jan 12 2018 *)
  • PARI
    {a(n) = local(A); if( n<3, n>0, A = x / (1 - x^2) + x * O(x^n); for(k=3, n-1, A /= (1 - x^k + x * O(x^n))^polcoeff(A, k)); polcoeff( (1 + x) * A - x * (A^2 + subst(A, x, x^2)) / 2, n))}; /* Michael Somos, Jun 13 2014 */

Formula

G.f.: 1 + ((1+x)/x)*f(x) - (f(x)^2+f(x^2))/(2*x) where 1+f(x) is g.f. for A001678 (homeomorphically irreducible planted trees by nodes).
a(n) = A001679(n) if n>0. - Michael Somos, Jun 13 2014
a(n) ~ c * d^n / n^(3/2), where d = A246403 = 2.18946198566085056388702757711... and c = 0.421301852869924921096502830935802411658488216342994235732491571594804013... - Vaclav Kotesovec, Jun 26 2014