A059172 Numbers k such that k/rad(k) > sqrt(k) where rad(k) is the largest squarefree number dividing k.
8, 16, 27, 32, 48, 54, 64, 72, 81, 96, 108, 125, 128, 144, 160, 162, 192, 200, 216, 224, 243, 250, 256, 288, 320, 324, 343, 375, 384, 392, 400, 405, 432, 448, 486, 500, 512, 567, 576, 625, 640, 648, 675, 686, 704, 729, 768, 784, 800, 832, 864, 896, 960, 968
Offset: 1
Keywords
Examples
48 is included because 6 is largest squarefree to divide 48 and 48 /6 = 8 > sqrt(48).
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000 (terms 1..1000 from Harvey P. Dale)
Programs
-
Mathematica
aa = {}; Do[kk = FactorInteger[c]; nn = 1; Do[nn = nn*kk[[n]][[1]], {n, 1, Length[kk]}]; If[Log[c]/Log[nn] >= 2,AppendTo[aa, c]], {c, 2, 1000}]; aa (* Artur Jasinski, Feb 02 2010 *) Select[Range[1000],#/Last[Select[Divisors[#],SquareFreeQ]]>Sqrt[#]&] (* Harvey P. Dale, Dec 14 2017 *)
Comments