A059179 Engel expansion of 3^(1/3) = 1.44225.
1, 3, 4, 4, 5, 8, 9, 14, 63, 91, 132, 605, 753, 993, 17297, 26120, 28227, 43466, 123132, 3551445, 7243732, 13958201, 41249856, 194184556, 3261328035, 13339681270, 18470226192, 23831447862, 25356135862
Offset: 1
References
- F. Engel, Entwicklung der Zahlen nach Stammbruechen, Verhandlungen der 52. Versammlung deutscher Philologen und Schulmaenner in Marburg, 1913, pp. 190-191.
Links
- G. C. Greubel, Table of n, a(n) for n = 1..1000
- F. Engel, Entwicklung der Zahlen nach Stammbruechen, Verhandlungen der 52. Versammlung deutscher Philologen und Schulmaenner in Marburg, 1913, pp. 190-191. English translation by Georg Fischer, included with his permission.
- P. Erdős and Jeffrey Shallit, New bounds on the length of finite Pierce and Engel series, Sem. Theor. Nombres Bordeaux (2) 3 (1991), no. 1, 43-53.
- Index entries for sequences related to Engel expansions
Programs
-
Mathematica
EngelExp[A_, n_] := Join[Array[1 &, Floor[A]], First@Transpose@ NestList[{Ceiling[1/Expand[#[[1]] #[[2]] - 1]], Expand[#[[1]] #[[2]] - 1]/1} &, {Ceiling[1/(A - Floor[A])], (A - Floor[A])/1}, n - 1]]; EngelExp[N[3^(1/3), 7!], 100] (* Modified by G. C. Greubel, Dec 27 2016 *)
Comments