A059186 Engel expansion of Pi^2/6, or zeta(2) = 1.64493.
1, 2, 4, 7, 9, 22, 35, 79, 2992, 3597, 17523, 28632, 41470, 53093, 57406, 14504930, 42622213, 188335162, 322429556, 1023003875, 1328535963, 3138645732, 11618168524, 137721814936, 156929353744, 166732460513, 813398686532
Offset: 1
References
- F. Engel, Entwicklung der Zahlen nach Stammbruechen, Verhandlungen der 52. Versammlung deutscher Philologen und Schulmaenner in Marburg, 1913, pp. 190-191.
Links
- G. C. Greubel and T. D. Noe, Table of n, a(n) for n = 1..1000[Terms 1 to 300 computed by T. D. Noe; Terms 301 to 1000 computed by G. C. Greubel, Dec 27 2016]
- F. Engel, Entwicklung der Zahlen nach Stammbruechen, Verhandlungen der 52. Versammlung deutscher Philologen und Schulmaenner in Marburg, 1913, pp. 190-191. English translation by Georg Fischer, included with his permission.
- P. Erdős and Jeffrey Shallit, New bounds on the length of finite Pierce and Engel series, Sem. Theor. Nombres Bordeaux (2) 3 (1991), no. 1, 43-53.
- Index entries for sequences related to Engel expansions
Programs
-
Mathematica
EngelExp[A_, n_] := Join[Array[1 &, Floor[A]], First@Transpose@ NestList[{Ceiling[1/Expand[#[[1]] #[[2]] - 1]], Expand[#[[1]] #[[2]] - 1]/1} &, {Ceiling[1/(A - Floor[A])], (A - Floor[A])/1}, n - 1]]; EngelExp[N[Pi^2/6, 7!], 100] (* Modified by G. C. Greubel, Dec 27 2016 *)
Comments