A059194 Engel expansion of 1/e^2 = 0.135335... .
8, 13, 14, 21, 87, 92, 119, 444, 472, 473, 548, 5380, 7995, 100393, 589494, 2034930, 12322338, 21633910, 55986423, 164342975, 6502609245, 22562439736, 26621735244, 39286977900, 576511092268, 892451075829, 1050206120774, 2228669763793, 3336969029043
Offset: 1
References
- F. Engel, Entwicklung der Zahlen nach Stammbruechen, Verhandlungen der 52. Versammlung deutscher Philologen und Schulmaenner in Marburg, 1913, pp. 190-191.
Links
- G. C. Greubel and T. D. Noe, Table of n, a(n) for n = 1..1000 [Terms 1 to 300 computed by T. D. Noe; Terms 301 to 1000 computed by G. C. Greubel, Dec 28 2016]
- F. Engel, Entwicklung der Zahlen nach Stammbruechen, Verhandlungen der 52. Versammlung deutscher Philologen und Schulmaenner in Marburg, 1913, pp. 190-191. English translation by Georg Fischer, included with his permission.
- P. Erdős and Jeffrey Shallit, New bounds on the length of finite Pierce and Engel series, Sem. Theor. Nombres Bordeaux (2) 3 (1991), no. 1, 43-53.
- Index entries for sequences related to Engel expansions
Crossrefs
Cf. A092553.
Programs
-
Mathematica
EngelExp[A_, n_] := Join[Array[1 &, Floor[A]], First@Transpose@ NestList[{Ceiling[1/Expand[#[[1]] #[[2]] - 1]], Expand[#[[1]] #[[2]] - 1]/1} &, {Ceiling[1/(A - Floor[A])], (A - Floor[A])/1}, n - 1]]; EngelExp[N[1/E^2, 7!], 100] (* Modified by G. C. Greubel, Dec 28 2016 *)
Comments