A059222 Minimal number of disjoint edge-paths into which the graph of the n-ary cube can be partitioned.
1, 1, 4, 1, 16, 1, 64, 1, 256, 1, 1024, 1, 4096, 1, 16384, 1, 65536, 1, 262144, 1, 1048576, 1, 4194304, 1, 16777216, 1, 67108864, 1, 268435456, 1, 1073741824, 1, 4294967296, 1, 17179869184, 1, 68719476736, 1, 274877906944, 1, 1099511627776, 1, 4398046511104
Offset: 1
Examples
a(5)=16 because 2^(5-1)=16. Consequently, the minimal number of disjoint edge-paths into which the 5-ary cube can be partitioned is 16.
References
- R. A. Brualdi, Introductory Combinatorics, 3rd ed. Prentice-Hall, 1999.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..400
- Index entries for linear recurrences with constant coefficients, signature (0,5,0,-4).
Crossrefs
Cf. A057979.
Programs
-
Mathematica
Table[If[EvenQ[n],1,2^(n-1)],{n,80}] (* or *) Riffle[2^(2Range[0,50]),1] (* Harvey P. Dale, Nov 02 2011 *)
Formula
a(n) = 1 if n is even and 2^(n-1) if n is odd.
G.f. -x*(-1-x+x^2+4*x^3) / ( (x-1)*(2*x+1)*(2*x-1)*(1+x) ). - R. J. Mathar, Apr 25 2013
E.g.f.: cosh(x)*(1 + sinh(x)) - 1. - Stefano Spezia, Mar 26 2022
Extensions
More terms from Harvey P. Dale, Nov 02 2011
Comments