cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A059224 a(n) = 2^(n-3)*(n + 3)*(2*n - 3).

Original entry on oeis.org

18, 70, 224, 648, 1760, 4576, 11520, 28288, 68096, 161280, 376832, 870400, 1990656, 4513792, 10158080, 22708224, 50462720, 111542272, 245366784, 537395200, 1172307968, 2548039680, 5519704064, 11920211968, 25669140480, 55129931776, 118111600640, 252463546368, 538481524736
Offset: 3

Views

Author

N. J. A. Sloane, Jan 19 2001

Keywords

Crossrefs

A diagonal of triangle defined in A059226.

Programs

  • Maple
    seq(2^(n-3)*(n+3)*(2*n-3), n = 3 .. 32); # Emeric Deutsch, Jun 27 2009
  • Mathematica
    Table[2^(n-3)*(n + 3)*(2*n - 3), {n,3,50}] (* or *) LinearRecurrence[{6, -12, 8}, {18, 70, 224}, 25] (* G. C. Greubel, Dec 30 2016 *)
  • PARI
    a(n) = { 2^(n - 3)*(n + 3)*(2*n - 3) } \\ Harry J. Smith, Jun 25 2009

Formula

G.f. = 2x^3*(9-19x+10x^2)/(1-2x)^3. - Emeric Deutsch, Jun 27 2009
From G. C. Greubel, Dec 30 2016: (Start)
a(n) = 6*a(n-1) - 12*a(n-2) + 8*a(n-3).
E.g.f.: (1/8)*((9 + 8*x - 10*x^2) - (9 - 10*x - 8*x^2)*exp(2*x)). (End)