cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A059238 Orders of the finite groups GL_2(K) when K is a finite field with q = A246655(n) elements.

Original entry on oeis.org

6, 48, 180, 480, 2016, 3528, 5760, 13200, 26208, 61200, 78336, 123120, 267168, 374400, 511056, 682080, 892800, 1014816, 1822176, 2755200, 3337488, 4773696, 5644800, 7738848, 11908560, 13615200, 16511040, 19845936, 25048800, 28003968
Offset: 1

Views

Author

Avi Peretz (njk(AT)netvision.net.il), Jan 21 2001

Keywords

Comments

From Jianing Song, Nov 06 2019: (Start)
GL_2(K) means the group of invertible 2 X 2 matrices A over K.
In general, let R be any commutative ring with unity, GL_n(R) be the group of n X n matrices A over R such that det(A) != 0 and SL_n(R) be the group of n X n matrices A over R such that det(A) = 1, then GL_n(R)/SL_n(R) = R* is the multiplicative group of R. This is because if we define f(M) = det(M) for M in GL_n(R), then f is a surjective homomorphism from GL_n(K) to R*, and SL_n(R) is its kernel. Thus |GL_n(R)|/|SL_n(R)| = |R*|; if K is a finite field, then |GL_n(R)|/|SL_n(R)| = |K|-1. (End)

Examples

			a(4) = 480 because A246655(4) = 5, and (5^2-1)*(5^2-5) = 480.
		

Crossrefs

Subsequence of A047927.
Cf. A246655, A000252 (order of GL_2(Z_n)).
For the order of SL_2(K) see A329119.

Programs

  • Maple
    with(numtheory): for n from 2 to 400 do if nops(ifactors(n)[2]) = 1 then printf(`%d,`, (n+1)*(n)*(n-1)^2) fi: od:
  • Mathematica
    nn=30;a=Take[Union[Sort[Flatten[Table[Table[Prime[m]^k,{m,1,nn}],{k,1,nn}]]]],nn];Table[(q^2-1)(q^2-q),{q,a}]  (* Geoffrey Critzer, Apr 20 2013 *)
  • PARI
    [(p+1)*p*(p-1)^2 | p <- [1..200], isprimepower(p)] \\ Jianing Song, Nov 05 2019

Formula

If the finite field K has p^m elements, then the order of the group GL_2(K) is (p^(2m)-1)*(p^(2m)-p^m) = (p^m+1)*(p^m)*(p^m-1)^2.
a(n) = A047927(A246655(n)+1). - Jianing Song, Nov 05 2019
a(n) = (A246655(n)-1)*A329119(n). - Jianing Song, Nov 06 2019

Extensions

More terms from James Sellers, Jan 22 2001
Offset corrected by Jianing Song, Nov 05 2019