A059238 Orders of the finite groups GL_2(K) when K is a finite field with q = A246655(n) elements.
6, 48, 180, 480, 2016, 3528, 5760, 13200, 26208, 61200, 78336, 123120, 267168, 374400, 511056, 682080, 892800, 1014816, 1822176, 2755200, 3337488, 4773696, 5644800, 7738848, 11908560, 13615200, 16511040, 19845936, 25048800, 28003968
Offset: 1
Keywords
Examples
a(4) = 480 because A246655(4) = 5, and (5^2-1)*(5^2-5) = 480.
Links
- Jianing Song, Table of n, a(n) for n = 1..10000
- R. A. Wilson, The classical groups, chapter 3.3.1 in The finite Simple Groups, Graduate Texts in Mathematics 251 (2009).
Crossrefs
Programs
-
Maple
with(numtheory): for n from 2 to 400 do if nops(ifactors(n)[2]) = 1 then printf(`%d,`, (n+1)*(n)*(n-1)^2) fi: od:
-
Mathematica
nn=30;a=Take[Union[Sort[Flatten[Table[Table[Prime[m]^k,{m,1,nn}],{k,1,nn}]]]],nn];Table[(q^2-1)(q^2-q),{q,a}] (* Geoffrey Critzer, Apr 20 2013 *)
-
PARI
[(p+1)*p*(p-1)^2 | p <- [1..200], isprimepower(p)] \\ Jianing Song, Nov 05 2019
Formula
If the finite field K has p^m elements, then the order of the group GL_2(K) is (p^(2m)-1)*(p^(2m)-p^m) = (p^m+1)*(p^m)*(p^m-1)^2.
Extensions
More terms from James Sellers, Jan 22 2001
Offset corrected by Jianing Song, Nov 05 2019
Comments