A059247 Denominator of Sum_{j=1..n} d(j)/n, where d = number of divisors function (A000005).
1, 2, 3, 1, 1, 3, 7, 2, 9, 10, 11, 12, 13, 14, 1, 8, 17, 9, 19, 10, 3, 11, 23, 2, 25, 2, 27, 28, 29, 10, 31, 32, 11, 34, 35, 9, 37, 19, 13, 20, 41, 1, 43, 1, 45, 23, 1, 8, 49, 50, 51, 52, 53, 54, 5, 56, 19, 58, 59, 20, 61, 62, 3, 8, 65, 33, 67, 17, 69, 35, 71
Offset: 1
Examples
1, 3/2, 5/3, 2, 2, 7/3, 16/7, 5/2, 23/9, 27/10, ...
References
- M. Aigner and G. M. Ziegler, Proofs from The Book, Springer-Verlag, Berlin, 1999; see p. 135.
Links
- G. C. Greubel, Table of n, a(n) for n = 1..1000
Programs
-
Mathematica
Denominator[Table[Sum[DivisorSigma[0, j]/n, {j,1,n}], {n,1,100}]] (* G. C. Greubel, Jan 02 2016 *)
-
PARI
a(n) = denominator(sum(j=1, n, numdiv(j))/n); \\ Michel Marcus, Jan 03 2017
-
Python
from math import isqrt, gcd def A059247(n): return n//gcd(n,(lambda m: 2*sum(n//k for k in range(1, m+1))-m*m)(isqrt(n))) # Chai Wah Wu, Oct 08 2021
Formula
a(n) = denominator(A006218(n)/n). - Michel Marcus, Jan 03 2017