A059287 Primes p such that x^16 = 2 has no solution mod p, but x^8 = 2 has a solution mod p.
1217, 1249, 1553, 1777, 2833, 4049, 4273, 4481, 4993, 5297, 6449, 6481, 6689, 7121, 8081, 8609, 9137, 9281, 9649, 10337, 10369, 10433, 11329, 11617, 11633, 12241, 12577, 13121, 13441, 13633, 14321, 14753, 15121, 15569, 16417, 16433, 16673
Offset: 1
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..150
Programs
-
Magma
[p: p in PrimesUpTo(17000) | not exists{x: x in ResidueClassRing(p) | x^16 eq 2} and exists{x: x in ResidueClassRing(p) | x^8 eq 2}]; // Vincenzo Librandi, Sep 21 2012
-
Mathematica
Select[Prime[Range[PrimePi[20000]]], !MemberQ[PowerMod[Range[#], 16, #], Mod[2, #]] && MemberQ[PowerMod[Range[#], 8, #], Mod[2, #]]&] (* Vincenzo Librandi, Sep 21 2013 *)
-
PARI
select( {is_A059287(p)=Mod(2,p)^(p\gcd(8,p-1))==1&&Mod(2,p)^(p\gcd(16,p-1))!=1}, primes(1999)) \\ Could any composite number pass this test? - M. F. Hasler, Jun 22 2024
-
Python
from itertools import islice from sympy import is_nthpow_residue, nextprime def A059287_gen(startvalue=2): # generator of terms >= startvalue p = max(1,startvalue-1) while (p:=nextprime(p)): if is_nthpow_residue(2,8,p) and not is_nthpow_residue(2,16,p): yield p A059287_list = list(islice(A059287_gen(),10)) # Chai Wah Wu, Jun 23 2024