cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A059287 Primes p such that x^16 = 2 has no solution mod p, but x^8 = 2 has a solution mod p.

Original entry on oeis.org

1217, 1249, 1553, 1777, 2833, 4049, 4273, 4481, 4993, 5297, 6449, 6481, 6689, 7121, 8081, 8609, 9137, 9281, 9649, 10337, 10369, 10433, 11329, 11617, 11633, 12241, 12577, 13121, 13441, 13633, 14321, 14753, 15121, 15569, 16417, 16433, 16673
Offset: 1

Views

Author

Klaus Brockhaus, Jan 25 2001

Keywords

Crossrefs

Cf. A070184 (same with x^64 instead of x^16).

Programs

  • Magma
    [p: p in PrimesUpTo(17000) | not exists{x: x in ResidueClassRing(p) | x^16 eq 2} and exists{x: x in ResidueClassRing(p) | x^8 eq 2}]; // Vincenzo Librandi, Sep 21 2012
    
  • Mathematica
    Select[Prime[Range[PrimePi[20000]]], !MemberQ[PowerMod[Range[#], 16, #], Mod[2, #]] && MemberQ[PowerMod[Range[#], 8, #], Mod[2, #]]&] (* Vincenzo Librandi, Sep 21 2013 *)
  • PARI
    select( {is_A059287(p)=Mod(2,p)^(p\gcd(8,p-1))==1&&Mod(2,p)^(p\gcd(16,p-1))!=1}, primes(1999)) \\ Could any composite number pass this test? - M. F. Hasler, Jun 22 2024
    
  • Python
    from itertools import islice
    from sympy import is_nthpow_residue, nextprime
    def A059287_gen(startvalue=2): # generator of terms >= startvalue
        p = max(1,startvalue-1)
        while (p:=nextprime(p)):
            if is_nthpow_residue(2,8,p) and not is_nthpow_residue(2,16,p):
                yield p
    A059287_list = list(islice(A059287_gen(),10)) # Chai Wah Wu, Jun 23 2024