A059331 Primes p such that x^24 = 2 has no solution mod p, but x^12 = 2 has a solution mod p.
113, 281, 353, 593, 617, 1049, 1097, 1193, 1481, 1601, 1753, 1889, 2129, 2273, 2281, 2393, 2689, 3089, 3137, 3761, 3833, 4001, 4153, 4217, 4289, 4457, 4657, 4817, 4937, 5113, 5393, 5569, 6521, 6569, 6761, 7481, 7577, 7793, 7817, 7841, 8273, 8369, 8537
Offset: 1
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..370
Programs
-
Magma
[p: p in PrimesUpTo(9000) | not exists{x: x in ResidueClassRing(p) | x^24 eq 2} and exists{x: x in ResidueClassRing(p) | x^12 eq 2}]; // Vincenzo Librandi, Sep 21 2012
-
Mathematica
Select[Prime[Range[PrimePi[1000]]], !MemberQ[PowerMod[Range[#], 24, #], Mod[2, #]] && MemberQ[PowerMod[Range[#], 12, #], Mod[2, #]]&] (* Vincenzo Librandi, Sep 21 2013 *)