cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A059331 Primes p such that x^24 = 2 has no solution mod p, but x^12 = 2 has a solution mod p.

Original entry on oeis.org

113, 281, 353, 593, 617, 1049, 1097, 1193, 1481, 1601, 1753, 1889, 2129, 2273, 2281, 2393, 2689, 3089, 3137, 3761, 3833, 4001, 4153, 4217, 4289, 4457, 4657, 4817, 4937, 5113, 5393, 5569, 6521, 6569, 6761, 7481, 7577, 7793, 7817, 7841, 8273, 8369, 8537
Offset: 1

Views

Author

Klaus Brockhaus, Jan 26 2001

Keywords

Crossrefs

Programs

  • Magma
    [p: p in PrimesUpTo(9000) | not exists{x: x in ResidueClassRing(p) | x^24 eq 2} and exists{x: x in ResidueClassRing(p) | x^12 eq 2}]; // Vincenzo Librandi, Sep 21 2012
  • Mathematica
    Select[Prime[Range[PrimePi[1000]]], !MemberQ[PowerMod[Range[#], 24, #], Mod[2, #]] && MemberQ[PowerMod[Range[#], 12, #], Mod[2, #]]&] (* Vincenzo Librandi, Sep 21 2013 *)