cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A059345 Central column of Pascal's "rhombus" (actually a triangle) A059317.

Original entry on oeis.org

1, 1, 4, 9, 29, 82, 255, 773, 2410, 7499, 23575, 74298, 235325, 747407, 2381126, 7603433, 24332595, 78013192, 250540055, 805803691, 2595158718, 8368026845, 27012184877, 87283372610, 282294378071, 913775677281, 2960160734818
Offset: 0

Views

Author

N. J. A. Sloane, Jan 27 2001

Keywords

Comments

Number of paths in the right half-plane from (0,0) to (n,0) consisting of steps U=(1,1), D=(1,-1), h=(1,0) and H=(2,0). Example: a(3)=9 because we have hhh, hH, Hh, hUD, hDU, UhD, DhU, UDh and DUh. The number of such paths restricted to the first quadrant is given in A128720. - Emeric Deutsch, Sep 03 2007
Number of lattice paths from (0,0) to (n,n) using steps (1,0), (1,1), (1,2), (2,2). - Joerg Arndt, Jun 30 2011
Other two columns of the triangle in A059317 are given in A106053 and A106050. - Emeric Deutsch, Sep 03 2007

References

  • Lin Yang and S.-L. Yang, The parametric Pascal rhombus. Fib. Q., 57:4 (2019), 337-346.

Crossrefs

Cf. A181545. - Paul D. Hanna, Oct 29 2010

Programs

  • Maple
    r:=proc(i,j) if i=0 then 0 elif i=1 and abs(j)>0 then 0 elif i=1 and j=0 then 1 elif i>=1 then r(i-1,j)+r(i-1,j-1)+r(i-1,j+1)+r(i-2,j) else 0 fi end: seq(r(i,0),i=1..12); # very slow; Emeric Deutsch, Jun 06 2004
    G:=1/sqrt((1+z-z^2)*(1-3*z-z^2)): Gser:=series(G,z=0,30): seq(coeff(Gser,z, n),n=0..27); # Emeric Deutsch, Sep 03 2007
    a[0]:=1: a[1]:=1: a[2]:=4: a[3]:=9: for n from 3 to 26 do a[n+1]:=((2*n+1)*a[n]+5*n*a[n-1]-(2*n-1)*a[n-2]-(n-1)*a[n-3])/(n+1) end do: seq(a[n],n=0..27); # Emeric Deutsch, Sep 03 2007
  • Mathematica
    CoefficientList[Series[1/Sqrt[(1+x-x^2)(1-3x-x^2)],{x,0,40}],x] (* Harvey P. Dale, Jun 04 2011 *)
    a[n_] := Sum[Binomial[n-k, k]*Hypergeometric2F1[(2*k-n)/2, (2*k-n+1)/2, 1, 4], {k, 0, Floor[n/2]}]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Nov 26 2015 *)
  • PARI
    {a(n)=polcoeff(sum(m=0,n,x^(2*m)/(1-x-x^2+x*O(x^n))^(2*m+1)*(2*m)!/(m!)^2),n)} \\ Paul D. Hanna, Oct 29 2010
    
  • PARI
    /* same as in A092566 but use */
    steps=[[1,0], [1,1], [1,2], [2,2]];
    /* Joerg Arndt, Jun 30 2011 */

Formula

G.f.: 1/sqrt((1+z-z^2)*(1-3*z-z^2)). - Emeric Deutsch, Sep 03 2007
D-finite with recurrence: (n+1)*a(n+1)=(2*n+1)*a(n)+5*n*a(n-1)-(2*n-1)*a(n-2)-(n-1)*a(n-3). - Emeric Deutsch, Sep 03 2007
a(n) = sum{k=0..floor(n/2), C(n-k,k)*A002426(n-2k)}. - Paul Barry, Nov 29 2008
G.f.: A(x) = Sum_{n>=0} (2*n)!/(n!)^2 * x^(2n)/(1-x-x^2)^(2n+1). - Paul D. Hanna, Oct 29 2010
a(n) ~ sqrt((3+11/sqrt(13))/8) * ((3+sqrt(13))/2)^n/sqrt(Pi*n). - Vaclav Kotesovec, Aug 11 2013

Extensions

More terms from Larry Reeves (larryr(AT)acm.org), Jan 30 2001