A059345 Central column of Pascal's "rhombus" (actually a triangle) A059317.
1, 1, 4, 9, 29, 82, 255, 773, 2410, 7499, 23575, 74298, 235325, 747407, 2381126, 7603433, 24332595, 78013192, 250540055, 805803691, 2595158718, 8368026845, 27012184877, 87283372610, 282294378071, 913775677281, 2960160734818
Offset: 0
References
- Lin Yang and S.-L. Yang, The parametric Pascal rhombus. Fib. Q., 57:4 (2019), 337-346.
Links
- T. D. Noe, Table of n, a(n) for n=0..200
- Paul Barry, On Motzkin-Schröder Paths, Riordan Arrays, and Somos-4 Sequences, J. Int. Seq. (2023) Vol. 26, Art. 23.4.7.
- J. Goldwasser et al., The density of ones in Pascal's rhombus, Discrete Math., 204 (1999), 231-236.
- Paul K. Stockmeyer, The Pascal Rhombus and the Stealth Configuration, arXiv:1504.04404 [math.CO], 2015.
Crossrefs
Cf. A181545. - Paul D. Hanna, Oct 29 2010
Programs
-
Maple
r:=proc(i,j) if i=0 then 0 elif i=1 and abs(j)>0 then 0 elif i=1 and j=0 then 1 elif i>=1 then r(i-1,j)+r(i-1,j-1)+r(i-1,j+1)+r(i-2,j) else 0 fi end: seq(r(i,0),i=1..12); # very slow; Emeric Deutsch, Jun 06 2004 G:=1/sqrt((1+z-z^2)*(1-3*z-z^2)): Gser:=series(G,z=0,30): seq(coeff(Gser,z, n),n=0..27); # Emeric Deutsch, Sep 03 2007 a[0]:=1: a[1]:=1: a[2]:=4: a[3]:=9: for n from 3 to 26 do a[n+1]:=((2*n+1)*a[n]+5*n*a[n-1]-(2*n-1)*a[n-2]-(n-1)*a[n-3])/(n+1) end do: seq(a[n],n=0..27); # Emeric Deutsch, Sep 03 2007
-
Mathematica
CoefficientList[Series[1/Sqrt[(1+x-x^2)(1-3x-x^2)],{x,0,40}],x] (* Harvey P. Dale, Jun 04 2011 *) a[n_] := Sum[Binomial[n-k, k]*Hypergeometric2F1[(2*k-n)/2, (2*k-n+1)/2, 1, 4], {k, 0, Floor[n/2]}]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Nov 26 2015 *)
-
PARI
{a(n)=polcoeff(sum(m=0,n,x^(2*m)/(1-x-x^2+x*O(x^n))^(2*m+1)*(2*m)!/(m!)^2),n)} \\ Paul D. Hanna, Oct 29 2010
-
PARI
/* same as in A092566 but use */ steps=[[1,0], [1,1], [1,2], [2,2]]; /* Joerg Arndt, Jun 30 2011 */
Formula
G.f.: 1/sqrt((1+z-z^2)*(1-3*z-z^2)). - Emeric Deutsch, Sep 03 2007
D-finite with recurrence: (n+1)*a(n+1)=(2*n+1)*a(n)+5*n*a(n-1)-(2*n-1)*a(n-2)-(n-1)*a(n-3). - Emeric Deutsch, Sep 03 2007
a(n) = sum{k=0..floor(n/2), C(n-k,k)*A002426(n-2k)}. - Paul Barry, Nov 29 2008
G.f.: A(x) = Sum_{n>=0} (2*n)!/(n!)^2 * x^(2n)/(1-x-x^2)^(2n+1). - Paul D. Hanna, Oct 29 2010
a(n) ~ sqrt((3+11/sqrt(13))/8) * ((3+sqrt(13))/2)^n/sqrt(Pi*n). - Vaclav Kotesovec, Aug 11 2013
Extensions
More terms from Larry Reeves (larryr(AT)acm.org), Jan 30 2001
Comments