cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A059349 Primes p such that x^32 = 2 has no solution mod p.

Original entry on oeis.org

3, 5, 11, 13, 17, 19, 29, 37, 41, 43, 53, 59, 61, 67, 83, 97, 101, 107, 109, 113, 131, 137, 139, 149, 157, 163, 173, 179, 181, 193, 197, 211, 227, 229, 241, 251, 257, 269, 277, 281, 283, 293, 307, 313, 317, 331, 347, 349, 353, 373, 379, 389, 397, 401, 409, 419
Offset: 1

Views

Author

Klaus Brockhaus, Jan 27 2001

Keywords

Comments

Complement of A049564 relative to A000040.
Differs from A014662 first at p=6529, then at p=21569. [R. J. Mathar, Oct 05 2008]
Differs from A045316 (x^8 == 2 (mod p) has no solution) first at a(37) = 257 which is not a term of A045316. See A070184 for all such terms. - M. F. Hasler, Jun 21 2024

Crossrefs

Cf. A070184 = (this sequence) \ A045316.

Programs

  • Magma
    [p: p in PrimesUpTo(450) | not exists{x : x in ResidueClassRing(p) | x^32 eq 2 }]; // Vincenzo Librandi, Sep 20 2012
  • Mathematica
    ok[p_] := Reduce[Mod[x^32 - 2, p] == 0, x, Integers] == False; Select[Prime[Range[100]], ok ] (* Vincenzo Librandi, Sep 20 2012  *)