cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A059354 Primes p such that x^27 = 2 has no solution mod p, but x^9 = 2 has a solution mod p.

Original entry on oeis.org

3943, 11287, 12853, 14149, 17659, 20143, 21061, 21277, 23059, 23599, 25759, 26407, 26731, 29863, 32833, 33751, 35803, 37747, 38287, 39367, 39799, 46441, 47737, 47791, 57781, 59887, 61291, 62047, 63127, 65557, 68311, 71443, 73063, 78301
Offset: 1

Views

Author

Klaus Brockhaus, Jan 27 2001

Keywords

Crossrefs

Programs

  • Magma
    [ p: p in PrimesUpTo(80000) | exists(t){x: x in ResidueClassRing(p) | x^9 eq 2} and forall(t){x : x in ResidueClassRing(p) | x^27 ne 2} ]; // Klaus Brockhaus, Dec 05 2008
  • Mathematica
    Select[Prime[Range[PrimePi[80000]]], !MemberQ[PowerMod[Range[#], 27, #], Mod[2, #]] && MemberQ[PowerMod[Range[#], 9, #], Mod[2, #]] &] (* Vincenzo Librandi, Sep 21 2013 *)

Extensions

a(25)-a(34) from Klaus Brockhaus, Dec 05 2008