cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A059364 Triangle T(n,k)=Sum_{i=0..n} |stirling1(n,n-i)|*binomial(i,k), k=0..n-1.

Original entry on oeis.org

1, 2, 1, 6, 7, 2, 24, 46, 29, 6, 120, 326, 329, 146, 24, 720, 2556, 3604, 2521, 874, 120, 5040, 22212, 40564, 39271, 21244, 6084, 720, 40320, 212976, 479996, 598116, 444849, 197380, 48348, 5040, 362880, 2239344, 6023772, 9223012, 8788569
Offset: 1

Views

Author

Vladeta Jovovic, Jan 28 2001

Keywords

Comments

Sum_{k=0..n-1} T(n,k)=(2*n-1)!!.
Alternating row sums = 1. - Gerald McGarvey, Aug 06 2006
Essentially triangle given by [1,1,2,2,3,3,4,4,5,5,6,6,...] DELTA [0,1,1,2,2,3,3,4,4,5,5,...] = [1;1,0;2,1,0;6,7,2,0;24,46,29,6,0;...] where DELTA is the operator defined in A084938. - Philippe Deléham, Nov 20 2006

Examples

			[1],
[2, 1],
[6, 7, 2],
[24, 46, 29, 6],
[120, 326, 329, 146, 24],
[720, 2556, 3604, 2521, 874, 120], ...
2+1=3!!, 6+7+2=5!!, 24+46+29+6=7!!, 120+326+329+146+24=9!!.
		

Crossrefs

Programs

  • Mathematica
    Table[Sum[Abs[StirlingS1[n, n - j]]*Binomial[j, k], {j, 0, n}], {n, 1, 10}, {k, 0, n - 1}] // Flatten (* G. C. Greubel, Jan 08 2017 *)
  • PARI
    T(n,k)=if(n<1,0,n!*polcoeff(polcoeff((1-x-x*y+x*O(x^n))^(-1/(1+y)),n),k))
    
  • Sage
    def A059364(n,k): return add(stirling_number1(n,n-i)*binomial(i,k) for i in (0..n))
    for n in (1..5): [A059364(n,k) for k in (0..n-1)]  # Peter Luschny, May 12 2013

Formula

For n>1, T(n,k) = (n-1)*T(n-1,k-1) + n*T(n-1,k) (assuming any T(i,j) outside the triangle = 0). - Gerald McGarvey, Aug 06 2006