A059364 Triangle T(n,k)=Sum_{i=0..n} |stirling1(n,n-i)|*binomial(i,k), k=0..n-1.
1, 2, 1, 6, 7, 2, 24, 46, 29, 6, 120, 326, 329, 146, 24, 720, 2556, 3604, 2521, 874, 120, 5040, 22212, 40564, 39271, 21244, 6084, 720, 40320, 212976, 479996, 598116, 444849, 197380, 48348, 5040, 362880, 2239344, 6023772, 9223012, 8788569
Offset: 1
Examples
[1], [2, 1], [6, 7, 2], [24, 46, 29, 6], [120, 326, 329, 146, 24], [720, 2556, 3604, 2521, 874, 120], ... 2+1=3!!, 6+7+2=5!!, 24+46+29+6=7!!, 120+326+329+146+24=9!!.
Links
- G. C. Greubel, Table of n, a(n) for the first 50 rows, flattened
- Grzegorz Rzadkowski and M. Urlinska, A Generalization of the Eulerian Numbers, arXiv preprint arXiv:1612.06635 [math.CO], 2016-2017.
Programs
-
Mathematica
Table[Sum[Abs[StirlingS1[n, n - j]]*Binomial[j, k], {j, 0, n}], {n, 1, 10}, {k, 0, n - 1}] // Flatten (* G. C. Greubel, Jan 08 2017 *)
-
PARI
T(n,k)=if(n<1,0,n!*polcoeff(polcoeff((1-x-x*y+x*O(x^n))^(-1/(1+y)),n),k))
-
Sage
def A059364(n,k): return add(stirling_number1(n,n-i)*binomial(i,k) for i in (0..n)) for n in (1..5): [A059364(n,k) for k in (0..n-1)] # Peter Luschny, May 12 2013
Formula
For n>1, T(n,k) = (n-1)*T(n-1,k-1) + n*T(n-1,k) (assuming any T(i,j) outside the triangle = 0). - Gerald McGarvey, Aug 06 2006
Comments