cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A059372 Revert transform of factorials n! (n >= 1).

Original entry on oeis.org

1, -2, 2, -4, -4, -48, -336, -2928, -28144, -298528, -3454432, -43286528, -583835648, -8433987584, -129941213184, -2127349165824, -36889047574272, -675548628690432, -13030733384956416, -264111424634864640
Offset: 1

Views

Author

N. J. A. Sloane, Jan 28 2001

Keywords

Comments

First diagonal of triangle in A059370.

References

  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 171, #34.

Crossrefs

Programs

  • Maple
    # From Transforms, see the footer of the page.
    REVERT([seq(k!, k=1..20)]); # Peter Luschny, May 01 2021
    # Using function CompInv from A357588.
    CompInv(10, n -> factorial(n)); # Peter Luschny, Oct 09 2022
  • Mathematica
    nmax = 20; t[n_, k_] := t[n, k] = Sum[(m + 1)!*t[n - m - 1, k - 1], {m, 0, n - k}]; t[n_, 1] = n!; t[n_, n_] = 1; tnk = Table[t[n, k], {n, 1, nmax}, {k, 1, nmax}]; Inverse[tnk][[All, 1]] (* Jean-François Alcover, Jul 13 2016 *)

Formula

a(n) ~ -exp(-2) * n! * (1 - 4/n + 2/n^2 - 34/(3*n^3) - 296/(3*n^4) - 4818/(5*n^5) - 508532/(45*n^6)). - Vaclav Kotesovec, Aug 04 2015
G.f. A(x) satisfies: A(x) = x - Sum_{k>=2} k! * A(x)^k. - Ilya Gutkovskiy, Apr 22 2020

Extensions

More terms from Vladeta Jovovic, Mar 05 2001
Definition refined by Georg Fischer, May 01 2021