A059389 Sums of two nonzero Fibonacci numbers.
2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16, 18, 21, 22, 23, 24, 26, 29, 34, 35, 36, 37, 39, 42, 47, 55, 56, 57, 58, 60, 63, 68, 76, 89, 90, 91, 92, 94, 97, 102, 110, 123, 144, 145, 146, 147, 149, 152, 157, 165, 178, 199, 233, 234, 235, 236, 238, 241, 246, 254, 267
Offset: 1
Examples
10 is in the sequence because 10 = 2 + 8. 11 is in the sequence because 11 = 3 + 8. 12 is not in the sequence because no pair of Fibonacci numbers adds up to 12.
Links
- T. D. Noe, Table of n, a(n) for n = 1..1000
Crossrefs
Programs
-
Maple
N:= 1000: # to get all terms <= N R:= NULL: for j from 1 do r:= combinat:-fibonacci(j); if r > N then break fi; R:= R, r; end: R:= {R}: select(`<=`, {seq(seq(r+s, s=R),r=R)},N); # if using Maple 11 or earlier, uncomment the next line # sort(convert(%,list)); # Robert Israel, Feb 15 2015
-
Mathematica
max = 13; Select[Union[Total/@Tuples[Fibonacci[Range[2, max]], {2}]], # <= Fibonacci[max] &] (* Harvey P. Dale, Mar 13 2011 *)
-
PARI
list(lim)=my(upper=log(lim*sqrt(5))\log((1+sqrt(5))/2)+1, t, tt, v=List([2])); if(fibonacci(t)>lim,t--); for(i=3,upper, t=fibonacci(i); for(j=2,i-1,tt=t+fibonacci(j); if(tt>lim, break, listput(v,tt)))); vecsort(Vec(v)) \\ Charles R Greathouse IV, Jul 24 2012
Formula
a(1) = 2 and for n >= 2 a(n) = F_(trinv(n-2)+2) + F_(n-((trinv(n-2)*(trinv(n-2)-1))/2)) where F_n is the n-th Fibonacci number, F_1 = 1 F_2 = 1 F_3 = 2 ... and the definition of trinv(n) is in A002262. - Noam Katz (noamkj(AT)hotmail.com), Feb 04 2001
log a(n) ~ sqrt(n log phi) where phi is the golden ratio A001622. There are (log x/log phi)^2 + O(log x) members of this sequence up to x. - Charles R Greathouse IV, Jul 24 2012
Extensions
More terms from Larry Reeves (larryr(AT)acm.org), Jan 31 2001
Comments