cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A049997 Numbers of the form Fibonacci(i)*Fibonacci(j).

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 8, 9, 10, 13, 15, 16, 21, 24, 25, 26, 34, 39, 40, 42, 55, 63, 64, 65, 68, 89, 102, 104, 105, 110, 144, 165, 168, 169, 170, 178, 233, 267, 272, 273, 275, 288, 377, 432, 440, 441, 442, 445, 466, 610, 699, 712, 714, 715, 720, 754
Offset: 0

Views

Author

Keywords

Comments

It follows from Atanassov et al. that a(n) << sqrt(phi)^n, which matches the trivial a(n) >> sqrt(phi)^n up to a constant factor. - Charles R Greathouse IV, Feb 06 2013
Conjecture: Fibonacci(m)*Fibonacci(n) with 2 < m < n is a perfect power only for (m,n) = (3,6). This has been verified for 2 < m < n <= 900. - Zhi-Wei Sun, Jan 02 2025

Examples

			25 is in the sequence since it is the product of two, not necessarily distinct, Fibonacci numbers, 5 and 5.
26 is in the sequence since it is the product of two Fibonacci numbers, 2 and 13.
27 is not in the sequence because there is no way whatsoever to represent it as the product of exactly two Fibonacci numbers.
		

Crossrefs

Subsequence of A065108; apart from the first term, subsequence of A094563. Complement is A228523.
See A049998 for further information about this sequence. Cf. A080097.
Intersection with A059389 (sums of two Fibonacci numbers) is A226857.
Cf. also A090206, A005478.

Programs

  • Mathematica
    Take[ Union@Flatten@Table[ Fibonacci[i]Fibonacci[j], {i, 0, 16}, {j, 0, i}], 61] (* Robert G. Wilson v, Dec 14 2005 *)
  • PARI
    list(lim)=my(phi=(1+sqrt(5))/2, v=vector(log(lim*sqrt(5))\log(phi), i, fibonacci(i+1)), u=List([0]),t); for(i=1,#v,for(j=i,#v,t=v[i]*v[j];if(t>lim,break,listput(u,t)))); vecsort(Vec(u),,8) \\ Charles R Greathouse IV, Feb 05 2013

A084176 Sums of two Fibonacci numbers (allowing 0 as a summand).

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16, 18, 21, 22, 23, 24, 26, 29, 34, 35, 36, 37, 39, 42, 47, 55, 56, 57, 58, 60, 63, 68, 76, 89, 90, 91, 92, 94, 97, 102, 110, 123, 144, 145, 146, 147, 149, 152, 157, 165, 178, 199, 233, 234, 235, 236, 238, 241, 246
Offset: 1

Views

Author

Jon Perry, Jun 20 2003

Keywords

Examples

			14=13+1, so is in, however 17 is not expressible as Fib(i)+Fib(j).
		

Crossrefs

Cf. A000045. Essentially the same as A059389.

Programs

  • PARI
    list(lim)=my(upper=log(lim*sqrt(5))\log((1+sqrt(5))/2)+1, t, tt, v=List([0,1,2])); if(fibonacci(t)>lim,t--); for(i=3,upper, t=fibonacci(i); for(j=2,i-1,tt=t+fibonacci(j); if(tt>lim, break, listput(v,tt)))); vecsort(Vec(v)) \\ Charles R Greathouse IV, Jul 24 2012

Formula

log a(n) ~ sqrt(n log phi) where phi is the golden ratio A001622. There are (log x/log phi)^2 + O(log x) members of this sequence up to x. - Charles R Greathouse IV, Jul 24 2012

A111378 Squares that are equal to the sum of two Fibonacci numbers.

Original entry on oeis.org

0, 1, 4, 9, 16, 36, 144, 1600, 14930496
Offset: 1

Views

Author

Giovanni Teofilatto, Nov 09 2005

Keywords

Comments

Any further terms have more than 10,000 digits. - Charles R Greathouse IV, Sep 16 2015

Crossrefs

Squares in A084176 (or A059389). Cf. A000045, A179334.

Programs

  • Maple
    Fibs:= {seq(combinat:-fibonacci(i),i=0..100)}:
    sort(convert(select(issqr,{seq(seq(Fibs[i]+Fibs[j],j=1..i),i=1..100)}),list)); # Robert Israel, Jun 03 2024
  • Mathematica
    Select[Union[Total/@Subsets[Fibonacci[Range[0,100]],{2}],Table[Fibonacci[n]*2,{n,0,100}]],IntegerQ[Sqrt[#]]&] (* James C. McMahon, Jun 03 2024 *)
  • PARI
    list(lim)=my(F=List(),v=List([0,1]),n=1,t); while((t=fibonacci(n++))<=lim, listput(F,t)); F=Vec(F); for(i=1,#F,for(j=i,#F, if(issquare(t=F[i]+F[j]), listput(v,t)))); Set(v) \\ Charles R Greathouse IV, Sep 16 2015

Extensions

1600 from Jonathan Vos Post, Nov 11 2005
14930496 from N. J. A. Sloane, Nov 11 2005

A178576 Primes that are the sum of two Fibonacci numbers.

Original entry on oeis.org

2, 3, 5, 7, 11, 13, 23, 29, 37, 47, 89, 97, 149, 157, 199, 233, 241, 379, 521, 613, 631, 1021, 1597, 1741, 2207, 3571, 9349, 10949, 11933, 17713, 28657, 46381, 46457, 46601, 50549, 75169, 196439, 203183, 214129, 514229, 560597, 832129, 2178343
Offset: 1

Views

Author

Carmine Suriano, Jan 12 2011

Keywords

Comments

The corresponding prime indices are in A178971.

Examples

			Prime 613 can be expressed as 3+610 = Fibonacci(4)+Fibonacci(15), therefore 613 is in the sequence.
		

Crossrefs

Cf. A000040, A000045, A178971. Subsequence of A059389.

Programs

  • Mathematica
    f=Fibonacci[Range[33]]; Select[Union[Flatten[Outer[Plus, f, f]]], PrimeQ]
  • PARI
    list(lim)={
        my(v,u=List(),t);
        v=vector(log(lim*sqrt(5))\log((1+sqrt(5))/2)+1,n,fibonacci(n));
        for(i=1,#v,for(j=i+1,#v,
            t = v[i] + v[j];
            if(t > lim, break);
            if(ispseudoprime(t),listput(u, t))
        ));
        vecsort(Vec(u),,8)
    }; \\ Charles R Greathouse IV, Jul 23 2012

A226857 Numbers that are both the sum of two Fibonacci numbers and the product of two Fibonacci numbers.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 8, 9, 10, 13, 15, 16, 21, 24, 26, 34, 39, 42, 55, 63, 68, 89, 102, 110, 144, 165, 178, 233, 267, 288, 377, 432, 466, 610, 699, 754, 987, 1131, 1220, 1597, 1830, 1974, 2584, 2961, 3194, 4181, 4791, 5168, 6765, 7752, 8362, 10946, 12543, 13530
Offset: 1

Views

Author

Alonso del Arte, Jun 19 2013

Keywords

Comments

All Fibonacci numbers are in the sequence. The only prime numbers in this sequence are prime Fibonacci numbers.

Examples

			5 + 21 = 2 * 13 = 26, therefore 26 is in the sequence.
8 + 21 = 1 * 34 = 34, therefore 34 is in the sequence.
5 + 34 = 3 * 13 = 39, therefore 39 is in the sequence.
		

Crossrefs

Programs

  • Mathematica
    t = Fibonacci[Range[0, 25]]; t1 = Select[Union[Flatten[Table[a + b, {a, t}, {b, t}]]], # <= t[[-1]] &]; t2 = Select[Union[Flatten[Table[a*b, {a, t}, {b, t}]]], # <= t[[-1]] &]; Intersection[t1, t2] (* T. D. Noe, Jul 03 2013 *)

Formula

Conjecture: a(n) = a(n-3)+a(n-6) for n>12. - Colin Barker, Nov 09 2014
Empirical g.f.: -x^2*(x^10 +x^9 +x^8 +2*x^7 +3*x^6 +3*x^5 +3*x^4 +3*x^3 +3*x^2 +2*x +1) / (x^6 +x^3 -1). - Colin Barker, Nov 09 2014

A059390 Numbers that are not the sum of two nonzero Fibonacci numbers.

Original entry on oeis.org

1, 12, 17, 19, 20, 25, 27, 28, 30, 31, 32, 33, 38, 40, 41, 43, 44, 45, 46, 48, 49, 50, 51, 52, 53, 54, 59, 61, 62, 64, 65, 66, 67, 69, 70, 71, 72, 73, 74, 75, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 93, 95, 96, 98, 99, 100, 101, 103, 104, 105, 106, 107, 108, 109
Offset: 1

Views

Author

Avi Peretz (njk(AT)netvision.net.il), Jan 29 2001

Keywords

Comments

Except for the initial 1, each term can be expressed as the sum of a Fibonacci number and a non-Fibonacci number (A001690) and is thus the sum of three or more Fibonacci numbers. - Alonso del Arte, Jun 18 2013
That is, aside from the first term, numbers n such that A007895(n) > 2. - Charles R Greathouse IV, Jun 18 2013

Crossrefs

Complement of A059389.

Programs

  • Mathematica
    Complement[ Range[ Fibonacci[ 12 ]], Union[ Flatten[ Table[ Fibonacci[i] + Fibonacci[j], {i, 12}, {j, i - 1}]]]] (* Robert G. Wilson v, Jul 22 2005 *)
  • PARI
    is(n)=if(n<9,return(n==1)); my(k);while(fibonacci(k++)<=n,); n-=fibonacci(k-1); k=n^2; k+=(k+1)<<2; !issquare(k) && !issquare(k-8) \\ Charles R Greathouse IV, Jun 18 2013

Extensions

More terms from Larry Reeves (larryr(AT)acm.org), Jan 31 2001

A362295 Sums of two Fibonacci numbers that are also sums of two squares.

Original entry on oeis.org

0, 1, 2, 4, 5, 8, 9, 10, 13, 16, 18, 26, 29, 34, 36, 37, 58, 68, 89, 90, 97, 144, 145, 146, 149, 157, 178, 233, 234, 241, 288, 377, 466, 521, 610, 612, 613, 754, 1000, 1021, 1042, 1076, 1220, 1597, 1600, 1602, 1618, 1741, 2592, 2597, 2605, 2817, 3194, 4181, 4194, 4325, 6770, 6773, 6778, 6786
Offset: 1

Views

Author

Robert Israel, Apr 14 2023

Keywords

Comments

Intersection of A001481 and A084176.

Examples

			a(5) = 5 is a term because 5 = 2 + 3 = A000045(3) + A000045(4) = 2^2 + 1^2.
		

Crossrefs

Programs

  • Maple
    ss:= proc(n) local F,t;
      F:= ifactors(n)[2];
      andmap(t ->  t[1] mod 4 <> 3 or t[2]::even, F)
    end proc:
    fibs:= map(combinat:-fibonacci, {$0..25}):
    N:= max(fibs):
    fib2:= {seq(seq(fibs[i]+fibs[j],i=1..j),j=1..nops(fibs))}:
    sort(convert(select(t -> t <= N and ss(t), fib2),list));
  • Mathematica
    max = 150; (* max = 150 gives 1670 terms *)
    Join[{0, 1}, Select[Union[Total /@ Tuples[Fibonacci[Range[2, max]], {2}]], # <= Fibonacci[max] && SquaresR[2, #] != 0&]] (* Jean-François Alcover, Sep 29 2024, after Harvey P. Dale in A059389 *)
  • Python
    from itertools import islice
    from sympy import factorint
    def A362295_gen(): # generator of terms
        yield from (0,1,2)
        a = [1,2]
        while True:
            b = a[-1]+a[-2]
            c = a[-1]<<1
            flag = True
            for d in a:
                n = b+d
                if flag and n>=c:
                    if n>c:
                       f = factorint(c)
                       if all(d & 3 != 3 or f[d] & 1 == 0 for d in f):
                           yield c
                    flag = False
                f = factorint(n)
                if all(d & 3 != 3 or f[d] & 1 == 0 for d in f):
                    yield n
            a.append(b)
    A362295_list = list(islice(A362295_gen(),60)) # Chai Wah Wu, Apr 16 2023
Showing 1-7 of 7 results.