cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A059389 Sums of two nonzero Fibonacci numbers.

Original entry on oeis.org

2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16, 18, 21, 22, 23, 24, 26, 29, 34, 35, 36, 37, 39, 42, 47, 55, 56, 57, 58, 60, 63, 68, 76, 89, 90, 91, 92, 94, 97, 102, 110, 123, 144, 145, 146, 147, 149, 152, 157, 165, 178, 199, 233, 234, 235, 236, 238, 241, 246, 254, 267
Offset: 1

Views

Author

Avi Peretz (njk(AT)netvision.net.il), Jan 29 2001

Keywords

Comments

The sums of two distinct nonzero Fibonacci numbers is essentially the same sequence: 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16, 18, 21, ... (only 2 is missing), since F(i) + F(i) = F(i-2) + F(i+1). - Colm Mulcahy, Mar 02 2008
To elaborate on Mulcahy's comment above: all terms of A078642 are in this sequence; those are numbers with two distinct representations as the sum of two Fibonacci numbers, which are, as Alekseyev proved, numbers of the form 2*F(i) greater than 2. - Alonso del Arte, Jul 07 2013

Examples

			10 is in the sequence because 10 = 2 + 8.
11 is in the sequence because 11 = 3 + 8.
12 is not in the sequence because no pair of Fibonacci numbers adds up to 12.
		

Crossrefs

Cf. A000045, A059390 (complement). Similar in nature to A048645. Essentially the same as A084176. Intersection with A049997 is A226857.

Programs

  • Maple
    N:= 1000: # to get all terms <= N
    R:= NULL:
    for j from 1 do
      r:= combinat:-fibonacci(j);
      if r > N then break fi;
      R:= R, r;
    end:
    R:= {R}:
    select(`<=`, {seq(seq(r+s, s=R),r=R)},N);
    # if using Maple 11 or earlier, uncomment the next line
    # sort(convert(%,list)); # Robert Israel, Feb 15 2015
  • Mathematica
    max = 13; Select[Union[Total/@Tuples[Fibonacci[Range[2, max]], {2}]], # <= Fibonacci[max] &] (* Harvey P. Dale, Mar 13 2011 *)
  • PARI
    list(lim)=my(upper=log(lim*sqrt(5))\log((1+sqrt(5))/2)+1, t, tt, v=List([2])); if(fibonacci(t)>lim,t--); for(i=3,upper, t=fibonacci(i); for(j=2,i-1,tt=t+fibonacci(j); if(tt>lim, break, listput(v,tt)))); vecsort(Vec(v)) \\ Charles R Greathouse IV, Jul 24 2012

Formula

a(1) = 2 and for n >= 2 a(n) = F_(trinv(n-2)+2) + F_(n-((trinv(n-2)*(trinv(n-2)-1))/2)) where F_n is the n-th Fibonacci number, F_1 = 1 F_2 = 1 F_3 = 2 ... and the definition of trinv(n) is in A002262. - Noam Katz (noamkj(AT)hotmail.com), Feb 04 2001
log a(n) ~ sqrt(n log phi) where phi is the golden ratio A001622. There are (log x/log phi)^2 + O(log x) members of this sequence up to x. - Charles R Greathouse IV, Jul 24 2012

Extensions

More terms from Larry Reeves (larryr(AT)acm.org), Jan 31 2001

A280154 a(n) = 5*Lucas(n).

Original entry on oeis.org

10, 5, 15, 20, 35, 55, 90, 145, 235, 380, 615, 995, 1610, 2605, 4215, 6820, 11035, 17855, 28890, 46745, 75635, 122380, 198015, 320395, 518410, 838805, 1357215, 2196020, 3553235, 5749255, 9302490, 15051745, 24354235, 39405980, 63760215, 103166195, 166926410, 270092605, 437019015
Offset: 0

Views

Author

Bruno Berselli, Dec 27 2016

Keywords

Comments

Fibonacci sequence beginning 10, 5.
After 5, the sequence provides the 3rd column of the rectangular array in A213590.
After 5, all terms belong to A191921 because a(n) = Lucas(n+4) - 3*Lucas(n-1).
From G. C. Greubel, Dec 27 2016: (Start)
{a(n) mod 3} yields (1,2,0,2,2,1,0,1), repeated, and is given as A082115.
{a(n) mod 6} yields (4,5,3,2,5,1,0,1,1,2,3,5,2,1,3,4,1,5,0,5,5,4,3,1) and is given as A082117. (End)

Crossrefs

Subsequence of A084176.
Cf. A022088: 5*Fibonacci(n).
Cf. A022359: Lucas(n+5) + Lucas(n-5).
Cf. sequences with formula Fibonacci(n+k) + Fibonacci(n-k): A006355 (k=0, without the initial 1), A000032 (k=1), A022086 (k=2), A022112 (k=3, with an initial 4), A022090 (k=4), this sequence (k=5), A022352 (k=6).

Programs

  • Magma
    [5*Lucas(n): n in [0..40]];
    
  • Maple
    F := n -> combinat:-fibonacci(n):
    seq(F(n+5) + F(n-5), n=0..38); # Peter Luschny, Dec 29 2016
  • Mathematica
    Table[5 LucasL[n], {n, 0, 40}]
  • PARI
    vector(40, n, n--; fibonacci(n+5)+fibonacci(n-5))
    
  • Sage
    def A280154():
        x, y = 10, 5
        while True:
            yield x
            x, y = y, x + y
    a = A280154(); print([next(a) for  in range(39)]) # _Peter Luschny, Dec 29 2016

Formula

G.f.: 5*(2 - x)/(1 - x - x^2).
a(n) = a(n-1) + a(n-2) for n>1.
a(n) = Fibonacci(n+5) + Fibonacci(n-5), with Fibonacci(-k) = -(-1)^k*Fibonacci(k) for the negative indices.

A111378 Squares that are equal to the sum of two Fibonacci numbers.

Original entry on oeis.org

0, 1, 4, 9, 16, 36, 144, 1600, 14930496
Offset: 1

Views

Author

Giovanni Teofilatto, Nov 09 2005

Keywords

Comments

Any further terms have more than 10,000 digits. - Charles R Greathouse IV, Sep 16 2015

Crossrefs

Squares in A084176 (or A059389). Cf. A000045, A179334.

Programs

  • Maple
    Fibs:= {seq(combinat:-fibonacci(i),i=0..100)}:
    sort(convert(select(issqr,{seq(seq(Fibs[i]+Fibs[j],j=1..i),i=1..100)}),list)); # Robert Israel, Jun 03 2024
  • Mathematica
    Select[Union[Total/@Subsets[Fibonacci[Range[0,100]],{2}],Table[Fibonacci[n]*2,{n,0,100}]],IntegerQ[Sqrt[#]]&] (* James C. McMahon, Jun 03 2024 *)
  • PARI
    list(lim)=my(F=List(),v=List([0,1]),n=1,t); while((t=fibonacci(n++))<=lim, listput(F,t)); F=Vec(F); for(i=1,#F,for(j=i,#F, if(issquare(t=F[i]+F[j]), listput(v,t)))); Set(v) \\ Charles R Greathouse IV, Sep 16 2015

Extensions

1600 from Jonathan Vos Post, Nov 11 2005
14930496 from N. J. A. Sloane, Nov 11 2005

A272575 Perfect powers that are the sum of two Fibonacci numbers.

Original entry on oeis.org

1, 4, 8, 9, 16, 36, 144, 1000, 1600, 14930496
Offset: 1

Views

Author

Altug Alkan, May 03 2016

Keywords

Comments

Intersection of A001597 and A084176.
Listed terms are 1, 2^2, 2^3, 3^2, 2^4, 6^2, 12^2, 10^3, 40^2, 3864^2.
First five terms are also members of A000961.
Conjecture: there are no more terms in this sequence. Any remaining terms must have over 10000 digits. - Charles R Greathouse IV, May 04 2016

Examples

			8 is a term because 2^3 = 3 + 5.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[10^4], Function[k, Or[k == 1, GCD @@ Map[Last, FactorInteger@ k] > 1] && Total@ Map[Times @@ Boole@ Map[MemberQ[s, #] &, #] &, Transpose@ {#, k - #} &@ Range[0, Floor[k/2]]] > 0]] (* Michael De Vlieger, May 03 2016 *)
  • PARI
    list(lim)=my(upper=log(lim*sqrt(5))\log((1+sqrt(5))/2)+1, t, tt, v=List([1])); if(fibonacci(t)>lim, t--); for(i=3, upper, t=fibonacci(i); for(j=2, i-1, tt=t+fibonacci(j); if(tt>lim, break); if(ispower(tt), listput(v, tt)))); Set(v) \\ Charles R Greathouse IV, May 03 2016

A272632 Non-Fibonacci numbers that are both a sum and a difference of two Fibonacci numbers.

Original entry on oeis.org

4, 6, 7, 10, 11, 16, 18, 26, 29, 42, 47, 68, 76, 110, 123, 178, 199, 288, 322, 466, 521, 754, 843, 1220, 1364, 1974, 2207, 3194, 3571, 5168, 5778, 8362, 9349, 13530, 15127, 21892, 24476, 35422, 39603, 57314, 64079, 92736, 103682, 150050, 167761, 242786
Offset: 1

Views

Author

Altug Alkan, May 04 2016

Keywords

Comments

Intersection of A001690 and A007298 and A084176.
Sequence focuses on the non-Fibonacci numbers because of the fact that all Fibonacci numbers are both the sum of two Fibonacci numbers and the difference of two Fibonacci numbers by definition of Fibonacci numbers.
For relation with Lucas numbers, see formula section.

Examples

			6 is a term because 6 = Fibonacci(1) + Fibonacci(5) = Fibonacci(6) - Fibonacci(3).
16 is a term because 16 = Fibonacci(6) + Fibonacci(6) = Fibonacci(8) - Fibonacci(5).
167761 is a term because it is not a Fibonacci number and 167761 = Fibonacci(24) + Fibonacci(26) = 46368 + 121393 and Fibonacci(24) + Fibonacci(26) = Fibonacci(27) - Fibonacci(23) by definition.
		

Crossrefs

Programs

  • Mathematica
    mxf=30; {s,d} = Reap[Do[{a,b} = Fibonacci@{i,j}; Sow[a+b, 0]; Sow[a-b, 1], {i, mxf}, {j, i}]][[2]]; Complement[ Intersection[s, d], Fibonacci@ Range@ mxf] (* Giovanni Resta, May 04 2016 *)

Formula

a(2*n-1) = fibonacci(n+1) + fibonacci(n+3) =A000204(n+2) for n >= 1.
a(2*n) = 2*fibonacci(n+3) = A078642(n+1) for n >= 1.
G.f.: -x*(4+6*x+3*x^2+4*x^3)/(-1+x^2+x^4) . - R. J. Mathar, Jan 13 2023
a(n) = a(n-2) + a(n-4) for n > 4. - Christian Krause, Oct 31 2023

A272635 Numbers that are not a sum or a difference of two Fibonacci numbers.

Original entry on oeis.org

17, 25, 27, 28, 30, 38, 40, 41, 43, 44, 45, 46, 48, 49, 51, 59, 61, 62, 64, 65, 66, 67, 69, 70, 71, 72, 73, 74, 75, 77, 78, 79, 80, 82, 83, 85, 93, 95, 96, 98, 99, 100, 101, 103, 104, 105, 106, 107, 108, 109, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122
Offset: 1

Views

Author

Altug Alkan, May 04 2016

Keywords

Comments

This sequence is the complement of the union of A007298 and A084176.

Crossrefs

Programs

  • Maple
    N:= 30: # to get all terms < A000045(N+1) - A000045(N-4)
    fibs:= [seq(combinat:-fibonacci(i),i=1..N)]:
    R:= {seq(seq(fibs[i]-fibs[j],j=1..i-1),i=1..N), seq(seq(fibs[i]+fibs[j],j=1..i),i=1..N)}:
    A:= {$1..fibs[-1]+fibs[-2]-fibs[-5]-1} minus R:
    sort(convert(A,list)); # Robert Israel, May 04 2016

A362295 Sums of two Fibonacci numbers that are also sums of two squares.

Original entry on oeis.org

0, 1, 2, 4, 5, 8, 9, 10, 13, 16, 18, 26, 29, 34, 36, 37, 58, 68, 89, 90, 97, 144, 145, 146, 149, 157, 178, 233, 234, 241, 288, 377, 466, 521, 610, 612, 613, 754, 1000, 1021, 1042, 1076, 1220, 1597, 1600, 1602, 1618, 1741, 2592, 2597, 2605, 2817, 3194, 4181, 4194, 4325, 6770, 6773, 6778, 6786
Offset: 1

Views

Author

Robert Israel, Apr 14 2023

Keywords

Comments

Intersection of A001481 and A084176.

Examples

			a(5) = 5 is a term because 5 = 2 + 3 = A000045(3) + A000045(4) = 2^2 + 1^2.
		

Crossrefs

Programs

  • Maple
    ss:= proc(n) local F,t;
      F:= ifactors(n)[2];
      andmap(t ->  t[1] mod 4 <> 3 or t[2]::even, F)
    end proc:
    fibs:= map(combinat:-fibonacci, {$0..25}):
    N:= max(fibs):
    fib2:= {seq(seq(fibs[i]+fibs[j],i=1..j),j=1..nops(fibs))}:
    sort(convert(select(t -> t <= N and ss(t), fib2),list));
  • Mathematica
    max = 150; (* max = 150 gives 1670 terms *)
    Join[{0, 1}, Select[Union[Total /@ Tuples[Fibonacci[Range[2, max]], {2}]], # <= Fibonacci[max] && SquaresR[2, #] != 0&]] (* Jean-François Alcover, Sep 29 2024, after Harvey P. Dale in A059389 *)
  • Python
    from itertools import islice
    from sympy import factorint
    def A362295_gen(): # generator of terms
        yield from (0,1,2)
        a = [1,2]
        while True:
            b = a[-1]+a[-2]
            c = a[-1]<<1
            flag = True
            for d in a:
                n = b+d
                if flag and n>=c:
                    if n>c:
                       f = factorint(c)
                       if all(d & 3 != 3 or f[d] & 1 == 0 for d in f):
                           yield c
                    flag = False
                f = factorint(n)
                if all(d & 3 != 3 or f[d] & 1 == 0 for d in f):
                    yield n
            a.append(b)
    A362295_list = list(islice(A362295_gen(),60)) # Chai Wah Wu, Apr 16 2023

A377536 Integers that are the arithmetic mean of two distinct Fibonacci numbers (A000045).

Original entry on oeis.org

1, 2, 3, 4, 5, 7, 8, 9, 11, 12, 13, 17, 18, 21, 28, 29, 30, 34, 38, 45, 46, 47, 51, 55, 72, 73, 76, 89, 117, 118, 119, 123, 127, 144, 161, 189, 190, 191, 195, 199, 216, 233, 305, 306, 309, 322, 377, 494, 495, 496, 500, 504, 521, 538, 610, 682, 799, 800, 801, 805
Offset: 1

Views

Author

Felix Huber, Dec 18 2024

Keywords

Comments

This sequence contains all positive Fibonacci numbers of A000045. Proof: For i >= 2, (F(i-2) + F(i+1))/2 = (F(i-2) + F(i-1) + F(i))/2 = (F(i-2) + F(i-1) + F(i-2) + F(i-1))/2 = F(i-1) + F(i-2) = F(i).

Examples

			1 is in the sequence because (F(0) + F(3))/2 = (0 + 2)/2 = 1.
12 is in the sequence because (F(4) + F(8))/2 = (3 + 21)/2 = 12.
		

Crossrefs

Programs

  • Maple
    with(combinat):
    A377536:=proc(k)
       local L,M,i,j;
       M:={};
       L:=[seq(fibonacci(i),i=0..k)];
       for i to k do
          for j from i+1 to k+1 do
             if is(L[i]+L[j],even) then
                M:=[op(M),(L[i]+L[j])/2]
             fi
          od
       od;
       M:=convert(M,set);
       return op(M)
    end proc:
    A377536(17)

A272589 Numbers n such that the equation F(n) = sigma(F(i) + F(j)) has a solution with i >= 1 and j >= 0, where F(k) = A000045(k) represents the k-th Fibonacci number.

Original entry on oeis.org

1, 2, 4, 6, 7, 12, 24
Offset: 1

Views

Author

Altug Alkan, May 03 2016

Keywords

Comments

Corresponding distinct F(n) values for listed terms are 1, 3, 8, 13, 144, 46368.
Corresponding F(i) + F(j) values are for listed terms are 1, 2, 7, 9, 94, 28678.
It is known that for almost all positive integers n, the sum of divisors of Fibonacci(n) is not a Fibonacci number (see A272412). This sequence focuses on the sums of two Fibonacci numbers for a similar question. Since A000045 is obvious subsequence of A084176 by definition of Fibonacci numbers, the reason of existence of this sequence can be seen as a generalized version of question that is motivation of A272412.

Examples

			7 is a term because Fibonacci(7) = 13 = sigma(1 + 8) and 1, 8 are Fibonacci numbers.
		

Crossrefs

A344661 Integers k such that k^2 is the sum of two Fibonacci numbers.

Original entry on oeis.org

0, 1, 2, 3, 4, 6, 12, 40, 3864
Offset: 1

Views

Author

Lamine Ngom, May 26 2021

Keywords

Comments

Is this sequence finite?
No other terms below 10^20899.

Examples

			These square sums of Fibonacci numbers correspond to:
     0^2 = F(0)  + F(0);
     1^2 = F(1)  + F(0)  = F(2) + F(0);
     2^2 = F(4)  + F(1)  = F(4) + F(2) = F(3) + F(3);
     3^2 = F(6)  + F(1)  = F(6) + F(2);
     4^2 = F(7)  + F(4)  = F(6) + F(6);
     6^2 = F(9)  + F(3);
    12^2 = F(11) + F(10) = F(12) + F(0);
    40^2 = F(17) + F(4);
  3864^2 = F(36) + F(12).
		

Crossrefs

Showing 1-10 of 10 results.