A059402 Numbers with more than one prime factor that do not end in 0 and contain as substrings every maximal prime power dividing them.
1197, 14673, 83731, 129717, 167835, 322794, 429635, 831328, 1127125, 1183497, 1184128, 1319825, 1344837, 1371294, 1724786, 1731195, 1943795, 2597175, 2971137, 2993715, 3161907, 3181437, 3719193, 4609731, 4913928, 5037365, 5912739, 5981125, 6193563
Offset: 1
Examples
1197 = 9 * 7 * 19 and all of these are substrings.
Links
- Reinhard Zumkeller and Donovan Johnson, Table of n, a(n) for n = 1..500 (first 100 terms from Reinhard Zumkeller)
- Reinhard Zumkeller, Demonstration of first 100 terms
Programs
-
Haskell
import Data.List (isInfixOf) a059402 n = a059402_list !! (n-1) a059402_list = filter chi [1..] where chi n = n `mod` 10 > 0 && f n 1 0 a000040_list where f :: Integer -> Integer -> Int -> [Integer] -> Bool f 1 1 o _ = o > 1 f m x o ps'@(p:ps) | r == 0 = f m' (p*x) o ps' | x > 1 = show x `isInfixOf` show n && f m 1 (o+1) ps | m < p * p = f 1 m o ps | otherwise = f m 1 o ps where (m',r) = divMod m p -- Reinhard Zumkeller, Jul 21 2011
-
Mathematica
ok[n_] := If[id = IntegerDigits[n]; Last[id] == 0, False, If[ff = IntegerDigits /@ Apply[ Power, FactorInteger[n], {1}]; Length[ff] == 1, False, And @@ (MatchQ[id, {_, Sequence @@ #, _}] & ) /@ ff]]; A059402 = {}; Do[ If[ok[n], Print[n]; AppendTo[A059402, n]], {n, 1, 6*10^6}] (* Jean-François Alcover, Nov 24 2011 *)
-
Python
from sympy import factorint A059402_list = [n for n in range(2,10**6) if n % 10 and len(factorint(n)) > 1 and all(str(a**b) in str(n) for a, b in factorint(n).items())] # Chai Wah Wu, Aug 13 2021
Extensions
Offset corrected and a(6)-a(26) from Donovan Johnson, Jul 09 2010
Definition stated more precisely by Reinhard Zumkeller, Jul 19 2011