cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A060494 a(n) = floor(n^4/64).

Original entry on oeis.org

0, 0, 0, 1, 4, 9, 20, 37, 64, 102, 156, 228, 324, 446, 600, 791, 1024, 1305, 1640, 2036, 2500, 3038, 3660, 4372, 5184, 6103, 7140, 8303, 9604, 11051, 12656, 14430, 16384, 18530, 20880, 23447, 26244, 29283, 32580, 36147, 40000, 44152, 48620, 53418, 58564, 64072
Offset: 0

Views

Author

Henry Bottomley, Mar 21 2001

Keywords

Examples

			a(9) = floor(9^4/64) = floor(6561/64) = floor(102.51562...) = 102.
		

Programs

  • Mathematica
    Floor[Range[0,50]^4/64] (* or *) LinearRecurrence[ {4,-6,4,-1,0,0,0,0,0,0,0,0,0,0,0,1,-4,6,-4,1},{0,0,0,1,4,9,20,37,64,102,156,228,324,446,600,791,1024,1305,1640,2036},50] (* Harvey P. Dale, May 30 2014 *)
  • PARI
    a(n) = { n^4\64 } \\ Harry J. Smith, Jul 06 2009

Formula

a(n) = floor(A000583(n)/64) = floor(A011863(n-1)/4). a(2n) = A059403(2n); a(2n-1) = A059403(2n-1) + A011861(n).
From R. J. Mathar, Mar 24 2011: (Start)
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4) + a(n-16) - 4*a(n-17) + 6*a(n-18) - 4*a(n-19) + a(n-20).
G.f.: -x^3 *(1 - x^2 + 4*x^3 - 4*x^4 - 3*x^6 + 4*x^7 - 3*x^8 + 4*x^9 - 4*x^10 + 4*x^11 - x^12 + x^14 + 4*x^5) / ( (1+x) *(x^2+1) *(x^4+1) *(x^8+1) *(x-1)^5 ). (End)
Showing 1-1 of 1 results.