cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A059415 Numerators of sequence arising from Apery's proof that zeta(3) is irrational.

Original entry on oeis.org

0, 6, 351, 62531, 11424695, 35441662103, 20637706271, 963652602684713, 43190915887542721, 1502663969043851254939, 43786938951280269198311, 13780864457900933987428453, 51520703555193710949642777493
Offset: 0

Views

Author

N. J. A. Sloane, Jan 30 2001

Keywords

Examples

			0, 6, 351/4, 62531/36, ...
		

References

  • M. Kontsevich and D. Zagier, Periods, pp. 771-808 of B. Engquist and W. Schmid, editors, Mathematics Unlimited - 2001 and Beyond, 2 vols., Springer-Verlag, 2001.

Crossrefs

Programs

  • Maple
    a := proc(n) option remember; if n=0 then 0 elif n=1 then 6 else (n^(-3))* ( (34*(n-1)^3 + 51*(n-1)^2 + 27*(n-1) +5)*a((n-1)) - (n-1)^3*a((n-1)-1)); fi; end;
  • Mathematica
    a[n_] := Sum[ Binomial[n, k]^2*Binomial[k + n, k]^2*(Sum[1/m^3, {m, 1, n}] + Sum[(-1)^(m - 1)/(2*m^3*Binomial[n, m]*Binomial[m + n, m]), {m, 1, k}]), {k, 0, n}]; Table[a[n] // Numerator, {n, 0, 12}] (* Jean-François Alcover, Jul 16 2013, from the non-recursive formula *)

Formula

(n+1)^3*a(n+1) = (34*n^3 + 51*n^2 + 27*n +5)*a(n) - n^3*a(n-1), n >= 1.