cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A005259 Apery (Apéry) numbers: Sum_{k=0..n} (binomial(n,k)*binomial(n+k,k))^2.

Original entry on oeis.org

1, 5, 73, 1445, 33001, 819005, 21460825, 584307365, 16367912425, 468690849005, 13657436403073, 403676083788125, 12073365010564729, 364713572395983725, 11111571997143198073, 341034504521827105445, 10534522198396293262825, 327259338516161442321485
Offset: 0

Views

Author

Keywords

Comments

Conjecture: For each n = 1,2,3,... the Apéry polynomial A_n(x) = Sum_{k = 0..n} binomial(n,k)^2*binomial(n+k,k)^2*x^k is irreducible over the field of rational numbers. - Zhi-Wei Sun, Mar 21 2013
The expansions of exp( Sum_{n >= 1} a(n)*x^n/n ) = 1 + 5*x + 49*x^2 + 685*x^3 + 11807*x^4 + 232771*x^5 + ... and exp( Sum_{n >= 1} a(n-1)*x^n/n ) = 1 + 3*x + 27*x^2 + 390*x^3 + 7038*x^4 + 144550*x^5 + ... both appear to have integer coefficients. See A267220. - Peter Bala, Jan 12 2016
Diagonal of the rational function R(x, y, z, w) = 1 / (1 - (w*x*y*z + w*x*y + w*z + x*y + x*z + y + z)); also diagonal of rational function H(x, y, z, w) = 1/(1 - w*(1+x)*(1+y)*(1+z)*(x*y*z + y*z + y + z + 1)). - Gheorghe Coserea, Jun 26 2018
Named after the French mathematician Roger Apéry (1916-1994). - Amiram Eldar, Jun 10 2021

Examples

			G.f. = 1 + 5*x + 73*x^2 + 1445*x^3 + 33001*x^4 + 819005*x^5 + 21460825*x^6 + ...
a(2) = (binomial(2,0) * binomial(2+0,0))^2 + (binomial(2,1) * binomial(2+1,1))^2 + (binomial(2,2) * binomial(2+2,2))^2 = (1*1)^2 + (2*3)^2 + (1*6)^2 = 1 + 36 + 36 = 73. - _Michael B. Porter_, Jul 14 2016
		

References

  • Julian Havil, The Irrationals, Princeton University Press, Princeton and Oxford, 2012, pp. 137-153.
  • Wolfram Koepf, Hypergeometric Identities. Ch. 2 in Hypergeometric Summation: An Algorithmic Approach to Summation and Special Function Identities. Braunschweig, Germany: Vieweg, pp. 55, 119 and 146, 1998.
  • Maxim Kontsevich and Don Zagier, Periods, pp. 771-808 of B. Engquist and W. Schmid, editors, Mathematics Unlimited - 2001 and Beyond, 2 vols., Springer-Verlag, 2001.
  • Leonard Lipshitz and Alfred van der Poorten, "Rational functions, diagonals, automata and arithmetic." In Number Theory, Richard A. Mollin, ed., Walter de Gruyter, Berlin (1990), pp. 339-358.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Apéry's number or Apéry's constant zeta(3) is A002117. - N. J. A. Sloane, Jul 11 2023
Related to diagonal of rational functions: A268545-A268555.
The Apéry-like numbers [or Apéry-like sequences, Apery-like numbers, Apery-like sequences] include A000172, A000984, A002893, A002895, A005258, A005259, A005260, A006077, A036917, A063007, A081085, A093388, A125143 (apart from signs), A143003, A143007, A143413, A143414, A143415, A143583, A183204, A214262, A219692,A226535, A227216, A227454, A229111 (apart from signs), A260667, A260832, A262177, A264541, A264542, A279619, A290575, A290576. (The term "Apery-like" is not well-defined.)
For primes that do not divide the terms of the sequences A000172, A005258, A002893, A081085, A006077, A093388, A125143, A229111, A002895, A290575, A290576, A005259 see A260793, A291275-A291284 and A133370 respectively.
Cf. A092826 (prime terms).

Programs

  • GAP
    List([0..20],n->Sum([0..n],k->Binomial(n,k)^2*Binomial(n+k,k)^2)); # Muniru A Asiru, Sep 28 2018
    
  • Haskell
    a005259 n = a005259_list !! n
    a005259_list = 1 : 5 : zipWith div (zipWith (-)
       (tail $ zipWith (*) a006221_list a005259_list)
       (zipWith (*) (tail a000578_list) a005259_list)) (drop 2 a000578_list)
    -- Reinhard Zumkeller, Mar 13 2014
    
  • Magma
    [&+[Binomial(n, k) ^2 *Binomial(n+k, k)^2: k in [0..n]]:n in  [0..17]]; // Marius A. Burtea, Jan 20 2020
    
  • Maple
    a := proc(n) option remember; if n=0 then 1 elif n=1 then 5 else (n^(-3))* ( (34*(n-1)^3 + 51*(n-1)^2 + 27*(n-1) +5)*a((n-1)) - (n-1)^3*a((n-1)-1)); fi; end;
    # Alternative:
    a := n -> hypergeom([-n, -n, 1+n, 1+n], [1, 1, 1], 1):
    seq(simplify(a(n)), n=0..17); # Peter Luschny, Jan 19 2020
  • Mathematica
    Table[HypergeometricPFQ[{-n, -n, n+1, n+1}, {1,1,1}, 1],{n,0,13}] (* Jean-François Alcover, Apr 01 2011 *)
    Table[Sum[(Binomial[n,k]Binomial[n+k,k])^2,{k,0,n}],{n,0,30}] (* Harvey P. Dale, Oct 15 2011 *)
    a[ n_] := SeriesCoefficient[ SeriesCoefficient[ SeriesCoefficient[ SeriesCoefficient[ 1 / (1 - t (1 + x ) (1 + y ) (1 + z ) (x y z + (y + 1) (z + 1))), {t, 0, n}], {x, 0, n}], {y, 0, n}], {z, 0, n}]; (* Michael Somos, May 14 2016 *)
  • PARI
    a(n)=sum(k=0,n,(binomial(n,k)*binomial(n+k,k))^2) \\ Charles R Greathouse IV, Nov 20 2012
    
  • Python
    def A005259(n):
        m, g = 1, 0
        for k in range(n+1):
            g += m
            m *= ((n+k+1)*(n-k))**2
            m //=(k+1)**4
        return g # Chai Wah Wu, Oct 02 2022

Formula

D-finite with recurrence (n+1)^3*a(n+1) = (34*n^3 + 51*n^2 + 27*n + 5)*a(n) - n^3*a(n-1), n >= 1.
Representation as a special value of the hypergeometric function 4F3, in Maple notation: a(n)=hypergeom([n+1, n+1, -n, -n], [1, 1, 1], 1), n=0, 1, ... - Karol A. Penson Jul 24 2002
a(n) = Sum_{k >= 0} A063007(n, k)*A000172(k). A000172 = Franel numbers. - Philippe Deléham, Aug 14 2003
G.f.: (-1/2)*(3*x - 3 + (x^2-34*x+1)^(1/2))*(x+1)^(-2)*hypergeom([1/3,2/3],[1],(-1/2)*(x^2 - 7*x + 1)*(x+1)^(-3)*(x^2 - 34*x + 1)^(1/2)+(1/2)*(x^3 + 30*x^2 - 24*x + 1)*(x+1)^(-3))^2. - Mark van Hoeij, Oct 29 2011
Let g(x, y) = 4*cos(2*x) + 8*sin(y)*cos(x) + 5 and let P(n,z) denote the Legendre polynomial of degree n. Then G. A. Edgar posted a conjecture of Alexandru Lupas that a(n) equals the double integral 1/(4*Pi^2)*int {y = -Pi..Pi} int {x = -Pi..Pi} P(n,g(x,y)) dx dy. (Added Jan 07 2015: Answered affirmatively in Math Overflow question 178790) - Peter Bala, Mar 04 2012; edited by G. A. Edgar, Dec 10 2016
a(n) ~ (1+sqrt(2))^(4*n+2)/(2^(9/4)*Pi^(3/2)*n^(3/2)). - Vaclav Kotesovec, Nov 01 2012
a(n) = Sum_{k=0..n} C(n,k)^2 * C(n+k,k)^2. - Joerg Arndt, May 11 2013
0 = (-x^2+34*x^3-x^4)*y''' + (-3*x+153*x^2-6*x^3)*y'' + (-1+112*x-7*x^2)*y' + (5-x)*y, where y is g.f. - Gheorghe Coserea, Jul 14 2016
From Peter Bala, Jan 18 2020: (Start)
a(n) = Sum_{0 <= j, k <= n} (-1)^(n+j) * C(n,k)^2 * C(n+k,k)^2 * C(n,j) * C(n+k+j,k+j).
a(n) = Sum_{0 <= j, k <= n} C(n,k) * C(n+k,k) * C(k,j)^3 (see Koepf, p. 55).
a(n) = Sum_{0 <= j, k <= n} C(n,k)^2 * C(n,j)^2 * C(3*n-j-k,2*n) (see Koepf, p. 119).
Diagonal coefficients of the rational function 1/((1 - x - y)*(1 - z - t) - x*y*z*t) (Straub, 2014). (End)
a(n) = [x^n] 1/(1 - x)*( Legendre_P(n,(1 + x)/(1 - x)) )^m at m = 2. At m = 1 we get the Apéry numbers A005258. - Peter Bala, Dec 22 2020
a(n) = Sum_{k = 0..n} (-1)^(n+k)*binomial(n, k)*binomial(n+k, k)*A108625(n, k). - Peter Bala, Jul 18 2024
a(n) = Sum_{k=0..n} Sum_{j=0..n} C(n,k)^2 * C(n,j)^2 * C(k+j,k), see Labelle et al. link. - Max Alekseyev, Mar 12 2025

A156164 Decimal expansion of 17 + 12*sqrt(2).

Original entry on oeis.org

3, 3, 9, 7, 0, 5, 6, 2, 7, 4, 8, 4, 7, 7, 1, 4, 0, 5, 8, 5, 6, 2, 0, 2, 6, 4, 6, 9, 0, 5, 1, 6, 3, 7, 6, 9, 4, 2, 8, 3, 6, 0, 6, 2, 5, 0, 4, 5, 2, 3, 3, 7, 6, 8, 7, 8, 1, 2, 0, 1, 5, 6, 8, 5, 5, 8, 8, 8, 7, 8, 9, 7, 4, 1, 5, 4, 5, 2, 8, 4, 4, 6, 6, 2, 0, 4, 6, 5, 0, 4, 1, 1, 9, 3, 1, 6, 9, 8, 8, 7, 2, 8, 2, 0, 1
Offset: 2

Views

Author

Klaus Brockhaus, Feb 09 2009

Keywords

Comments

Lim_{n -> infinity} b(n)/b(n-1) = 17+12*sqrt(2) for b = A156160, A156161, A156162, A278310.
Conjecturally, the fractional part 0.97056 27484 ... of this constant equals ( (1 + 2 * Sum_{n >= 1} (-1)^n*exp(-2*Pi*n^2))/(1 + 2 * Sum_{n >= 1} exp(-2*Pi*n^2)) )^4. The series are rapidly converging. For example, summing both series from n = 1 to n = 2 approximates the fractional part of the constant as ( (1 - 2*exp(-2*Pi) + 2*exp(-8*Pi))/(1 + 2*exp(-2*Pi) + 2*exp(-8*Pi)) )^4 = 0.97056 27484 77140 58562 026(89) ..., correct to 23 decimal places. - Peter Bala, Jun 05 2019

Examples

			17 + 12*sqrt(2) = 33.97056274847714058562026469051637694283606250452337687...
		

Crossrefs

Cf. A002193: decimal expansion of sqrt(2); A156035: decimal expansion of 3+2*sqrt(2); A156163: decimal expansion of (19+6*sqrt(2))/17.

Programs

Formula

17+12*sqrt(2) = (3+2*sqrt(2))^2 = (1+sqrt(2))^4. - Klaus Brockhaus, Feb 14 2009. (corrected by Bruno Berselli, Feb 19 2013)

A059416 Denominators of sequence arising from Apery's proof that zeta(3) is irrational.

Original entry on oeis.org

1, 1, 4, 36, 288, 36000, 800, 1372000, 2195200, 2667168000, 2667168000, 28400004864, 3550000608000, 311974053431040, 7799351335776000, 7799351335776000, 1134451103385600, 306545704901339904000, 6812126775585331200, 233621887768698933504000
Offset: 0

Views

Author

N. J. A. Sloane, Jan 30 2001

Keywords

Examples

			0, 6, 351/4, 62531/36, ...
		

References

  • M. Kontsevich and D. Zagier, Periods, pp. 771-808 of B. Engquist and W. Schmid, editors, Mathematics Unlimited - 2001 and Beyond, 2 vols., Springer-Verlag, 2001.

Crossrefs

Programs

  • Maple
    a := proc(n) option remember; if n=0 then 0 elif n=1 then 6 else (n^(-3))* ( (34*(n-1)^3 + 51*(n-1)^2 + 27*(n-1) +5)*a((n-1)) - (n-1)^3*a((n-1)-1)); fi; end;
  • Mathematica
    a[n_] := Sum[ Binomial[n, k]^2*Binomial[k + n, k]^2*(Sum[1/m^3, {m, 1, n}] + Sum[(-1)^(m - 1)/(2*m^3*Binomial[n, m]*Binomial[m + n, m]), {m, 1, k}]), {k, 0, n}]; Table[a[n] // Denominator, {n, 0, 19}] (* Jean-François Alcover, Jul 16 2013, from the non-recursive formula *)

Formula

(n+1)^3*a(n+1) = (34*n^3 + 51*n^2 + 27*n +5)*a(n) - n^3*a(n-1), n >= 1.

A257045 Denominators of Apéry's rational approximations p_n/q_n to zeta(3).

Original entry on oeis.org

1, 5, 292, 52020, 9504288, 29484180000, 17168660000, 801669704780000, 35930841355360000, 1250077234358967840000, 36426677336311407264000, 11464402743063221545440000, 42860453128110714373355232000
Offset: 0

Views

Author

Jean-François Alcover, Apr 15 2015

Keywords

Examples

			0, 6/5,  351/292,  62531/52020, 11424695/9504288, 35441662103/29484180000, ...
0, 1.2, 1.202..., 1.2020569...,   1.202056903...,        1.20205690316..., ...
		

Crossrefs

Programs

  • Mathematica
    p[n_] := Sum[Binomial[n+k, k]^2*Binomial[n, k]^2*(Sum[1/m^3, {m, 1, n}] + Sum[ (-1)^(m-1)/(2*m^3*Binomial[n, m]*Binomial[m+n, m]), {m, 1, k}]), {k, 0, n}]; q[n_] := Sum[Binomial[n+k, k]^2*Binomial[n, k]^2, {k, 0, n}]; Table[p[n]/q[n], {n, 0, 12}] // Denominator

Formula

See Mathematica script.

A288485 Expansion of (E_4(q) - 28*E_4(q^2) + 63*E_4(q^3) - 36*E(q^6)) / 240.

Original entry on oeis.org

1, -19, 91, -179, 126, -1, 344, -1459, 2521, -2394, 1332, -737, 2198, -6536, 11466, -11699, 4914, 485, 6860, -22554, 31304, -25308, 12168, -6625, 15751, -41762, 68131, -61576, 24390, -126, 29792, -93619, 121212, -93366, 43344, -15803, 50654, -130340
Offset: 1

Views

Author

Seiichi Manyama, Jun 09 2017

Keywords

Comments

Define f(q) = (eta(q^2)*eta(q^3))^7/(eta(q)*eta(q^6))^5, g(q) = Sum_{n>=1} a(n)/n^3 * q^n and t(q) = (eta(q)*eta(q^6)/(eta(q^2)*eta(q^3)))^12.
And define the sequence {b(n)} = {0, 6, 351/4, 62531/36, ...} as the solutions of the recursion (n+1)^3*b(n+1) = (34*n^3 + 51*n^2 + 27*n + 5)*b(n) - n^3*b(n-1), n >= 1 with b(0) = 0, b(1) = 6.
The following equation holds: 6*f(q)*g(q) = Sum_{n>=0} b(n)*t(q)^n.

Examples

			6*f(q)*g(q)
= 6*(1 + 5*q + 13*q^2 + 23*q^3 + 29*q^4 + 30*q^5 + 31*q^6 + 40*q^7 + ... )
  *(q - 19/8*q^2 + 91/27*q^3 - 179/64*q^4 + 126/125*q^5 - 1/216*q^6 + 344/343q^7 - ... )
= 6*q + 63/4*q^2 + 971/36*q^3 + 10679/288*q^4 + 1126103/36000*q^5 + 105401/2400*q^6 + 536870027/12348000*q^7 + ...
= 6 * (q - 12*q^2 + 66*q^3 - 220*q^4 + 495*q^5 - 804*q^6 + 1068*q^7 - ... )
  + 351/4 * (q^2 - 24*q^3 + 276*q^4 - 2024*q^5 + 10626*q^6 - 42528*q^7 + ... )
  + 62531/36 * (q^3 - 36*q^4 + 630*q^5 - 7140*q^6 + 58905*q^7 - ... )
  + 11424695/288 * (q^4 - 48*q^5 + 1128*q^6 - 17296*q^7 + ... )
  + 35441662103/36000 * (q^5 - 60*q^6 + 1770*q^7 - ... )
  + ...
		

References

  • D. Zagier, "Elliptic modular forms and their applications." The 1-2-3 of modular forms. Springer Berlin Heidelberg, 2008. 1-103.

Crossrefs

{b(n)} = {A059415(n)/A059416(n)} = {0, 6, 351/4, 62531/36, ...}.
Cf. A001158 (sigma_3(n)), A004009 (E_4), A006353 (f(q)), A226235 (t(q)).

Programs

  • Mathematica
    a[n_Integer] := Module[{b, ary}, b = Join[{0}, Table[DivisorSigma[3, i], {i, 1, n}]]; ary = b; Do[If[Mod[i, 2] == 0, ary[[i + 1]] -= 28*b[[i/2 + 1]]]; If[Mod[i, 3] == 0, ary[[i + 1]] += 63*b[[i/3 + 1]]]; If[Mod[i, 6] == 0, ary[[i + 1]] -= 36*b[[i/6 + 1]]];, {i, 1, n}]; Rest[ary]]; a[38] (* Robert P. P. McKone, Aug 23 2023 *)
  • Ruby
    def A001158(n)
      s = 0
      (1..n).each{|i| s += i * i * i if n % i == 0}
      s
    end
    def A288485(n)
      a = [0] + (1..n).map{|i| A001158(i)}
      ary = a.clone
      (1..n).each{|i|
        ary[i] -= 28 * a[i / 2] if i % 2 == 0
        ary[i] += 63 * a[i / 3] if i % 3 == 0
        ary[i] -= 36 * a[i / 6] if i % 6 == 0
      }
      ary[1..-1]
    end
    p A288485(100)

A303988 Triangle read by rows: numerators of c_{n,k}, n >= 0, 0 <= k <= n, used in the proof that Zeta(3) is irrational.

Original entry on oeis.org

0, 1, 5, 9, 29, 115, 251, 65, 5191, 1039, 2035, 10391, 2077, 72703, 58157, 256103, 259703, 1817471, 1817521, 7270009, 1454021, 28567, 67323, 25243, 389467, 21810107, 47982293, 6854599, 9822481, 9895981, 11132213, 66793523, 11755653433, 2351131157, 30564700141, 30564710941, 78708473, 237497419, 237487619, 23511313481, 23511309071, 61129406407, 5557218637, 61129406447, 244517610353
Offset: 0

Views

Author

Wolfdieter Lang, May 16 2018

Keywords

Comments

The corresponding denominators are given in A303989.
The numerators of the rational triangle c_{n,k} are denoted by T(n,k). The triangle c_{n,k} is used to compute Apéry's sequence of rationals a_n = A059415(n)/A059416(n), satisfying a certain three term recurrence, as a(n) = Sum_{k=0..n} c_{n,k}*(binomial(n+k,k)*binomial(n,k))^2 = Sum_{k=0..n} (T(n,k)/A303989(n,k))*A303987(n,k).
The column k = 0 gives the numerators of Zeta3(n) = A007408(n)/A007409(n), with Zeta3(0) := 0.

Examples

			The triangle T(n, k) begins:
  n/k      0       1        2        3           4          5           6
  0:       0
  1:       1       5
  2:       9      29      115
  3:     251      65     5191     1039
  4:    2035   10391     2077    72703       58157
  5:  256103  259703  1817471  1817521     7270009    1454021
  6:   28567   67323    25243   389467    21810107   47982293     6854599
  ...
  row n = 7: 9822481 9895981 11132213 66793523 11755653433 2351131157 30564700141 30564710941,
  row n = 8: 78708473 237497419 237487619 23511313481 23511309071 61129406407 5557218637 61129406447 244517610353,
  row n = 9: 19148110939 19237016539 211601625329 211601801729 2750823224027 42320357851 550164649543 550164651163 37411196140169 37411196579209,
  ...
------------------------------------------------------------------------------
The rational triangle c_{n,k} starts:
  n\k        0            1              2                3               4
  0:        0/1
  1:        1/1          5/4
  2:        9/8         29/24         115/96
  3:      251/216       65/54        5191/4320        1039/864
  4:    2035/1728    10391/8640      2077/1728      72703/60480      58157/48384
  ...
  row n = 5:  256103/216000 259703/216000 1817471/1512000 1817521/1512000 7270009/6048000 1454021/1209600,
  ...
		

References

  • Julian Havil, The Irrationals, Princeton University Press, Princeton and Oxford, 2012, pp. 137-153.

Crossrefs

Programs

  • PARI
    T(n,k) = numerator(sum(m=1, n, 1/m^3) + sum(m=1, k, (-1)^(m-1)/(2*m^3*binomial(n,m)*binomial(n+m,m)))) \\ Jason Yuen, May 27 2025

Formula

T(n,k) = numerator(c_{n,k}), with c_{n,k} = Zeta3(n) + Sum_{m=1..k} (-1)^(m-1)/(2*m^3*B(n,m)), where Zeta3(n) = Sum_{m=1..n} 1/m^3 = A007408(n)/A007409(n) and B(n,m) = A063007(n,m).

A112637 a(n) = b(n)*lcm{1,2,..,n}^3 where b(n) is a sequence of rationals arising in irrationality proof of zeta(3).

Original entry on oeis.org

0, 6, 702, 375186, 68548170, 212649972618, 5572180693170, 52037240544974502, 11661547289636534670, 9015983814263107529634, 262721633707681615189866, 10335648343425700490571339750, 309124221331162265697856664958
Offset: 0

Views

Author

Benoit Cloitre, Dec 27 2005

Keywords

Comments

Always an integer (divisible by 6).

Crossrefs

Formula

a(n) = (A059415(n)/A059416(n))*A003418(n)^3.
Showing 1-7 of 7 results.