cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A059435 Number of lattice paths in plane starting at (0,0) and ending at (n,n) with steps from {(i,j): i+j > 0, i, j >= 0} that never go below the line y = x.

Original entry on oeis.org

1, 2, 12, 88, 720, 6304, 57792, 547712, 5323008, 52761088, 531311616, 5420488704, 55905767424, 581954543616, 6106210615296, 64513688174592, 685741070942208, 7328106153115648, 78684992821788672, 848487859401261056
Offset: 0

Views

Author

Wenjin Woan, Feb 01 2001

Keywords

Comments

Series reversion of x(1-4x)/(1-2x). - Paul Barry, May 19 2005
The Hankel transform of this sequence is 8^C(n+1,2) = [1, 8, 512, 262144, ...]. - Philippe Deléham, Nov 08 2007

References

  • W.-J. Woan, A bijective proof by induction that the n-th term of this sequence is 2^(n-1) times of the n-th term of the big Schroeder number, 2001 (unpublished).

Crossrefs

Programs

  • Maple
    gf := (1+2*x-sqrt(4*x^2-12*x+1))/(8*x): s := series(gf, x, 100): for i from 0 to 50 do printf(`%d,`,coeff(s,x,i)) od:
  • Mathematica
    Table[SeriesCoefficient[(1+2*x-Sqrt[4*x^2-12*x+1])/(8*x),{x,0,n}],{n,0,20}] (* Vaclav Kotesovec, Oct 11 2012 *)
  • PARI
    x='x+O('x^66); Vec((1+2*x-sqrt(4*x^2-12*x+1))/(8*x)) \\ Joerg Arndt, May 06 2013

Formula

a(n) = 2^n*A001003(n).
G.f.: (1 + 2*x - sqrt(4*x^2 - 12*x + 1))/(8*x).
From Paul Barry, May 19 2005: (Start)
a(n) = (1/(n + 1)) * Sum_{k=0..n} C(n+1, k) * C(2*n-k, n)(-1)^k * 4^(n-k) * 2^k;
a(n) = Sum_{k=0..n} (1/n) * C(n, k) * C(n, k+1) * 4^k * 2^(n-k);
a(n) = Sum_{k=1..n} N(n, k)*2^(n+k-1), for n >= 1, where N(n, k) are the Narayana numbers (A001263). [Corrected by Alejandro H. Morales, May 14 2015]
(End)
Recurrence: (n+1)*a(n) = 6*(2*n-1)*a(n-1) - 4*(n-2)*a(n-2). - Vaclav Kotesovec, Oct 11 2012
a(n) ~ sqrt(4+3*sqrt(2))*(6+4*sqrt(2))^n/(4*sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Oct 11 2012