cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A059438 Triangle T(n,k) (1 <= k <= n) read by rows: T(n,k) is the number of permutations of [1..n] with k components.

Original entry on oeis.org

1, 1, 1, 3, 2, 1, 13, 7, 3, 1, 71, 32, 12, 4, 1, 461, 177, 58, 18, 5, 1, 3447, 1142, 327, 92, 25, 6, 1, 29093, 8411, 2109, 531, 135, 33, 7, 1, 273343, 69692, 15366, 3440, 800, 188, 42, 8, 1, 2829325, 642581, 125316, 24892, 5226, 1146, 252, 52, 9, 1
Offset: 1

Views

Author

N. J. A. Sloane, Feb 01 2001

Keywords

Examples

			Triangle begins:
[1] [     1]
[2] [     1,     1]
[3] [     3,     2,     1]
[4] [    13,     7,     3,    1]
[5] [    71,    32,    12,    4,   1]
[6] [   461,   177,    58,   18,   5,   1]
[7] [  3447,  1142,   327,   92,  25,   6,  1]
[8] [ 29093,  8411,  2109,  531, 135,  33,  7, 1]
[9] [273343, 69692, 15366, 3440, 800, 188, 42, 8, 1]
		

Crossrefs

A version with reflected rows is A263484.
Diagonals give A003319, A059439, A059440, A055998.
T(2n,n) gives A308650.

Programs

  • Maple
    # Uses function PMatrix from A357368. Adds column 1, 0, 0, ... to the left.
    PMatrix(10, A003319); # Peter Luschny, Oct 09 2022
  • Mathematica
    (* p = indecomposable permutations = A003319 *) p[n_] := p[n] = n! - Sum[ k!*p[n-k], {k, 1, n-1}]; t[n_, k_] /; n < k = 0; t[n_, 1] := p[n]; t[n_, k_] /; n >= k := t[n, k] = Sum[ t[n-j, k-1]*p[j], {j, 1, n}]; Flatten[ Table[ t[n, k], {n, 1, 10}, {k, 1, n}] ] (* Jean-François Alcover, Mar 06 2012, after Philippe Deléham *)
  • SageMath
    def A059438_triangle(dim) :
        R = PolynomialRing(ZZ, 'x')
        C = [R(0)] + [R(1) for i in range(dim+1)]
        A = [(i + 2) // 2 for i in range(dim+1)]
        A[0] = R.gen(); T = []
        for k in range(1, dim+1) :
            for n in range(k, 0, -1) :
                C[n] = C[n-1] + C[n+1] * A[n-1]
            T.append(list(C[1])[1::])
        return T
    A059438_triangle(8) # Peter Luschny, Sep 10 2022
    
  • SageMath
    # Alternatively, using the function PartTrans from A357078:
    # Adds a (0,0)-based column (1, 0, 0, ...) to the left of the triangle.
    dim = 10
    A = ZZ[['t']]; g = A([0]+[factorial(n) for n in range(1, 30)]).O(dim+2)
    PartTrans(dim, lambda n: list(g / (1 +  g))[n]) # Peter Luschny, Sep 11 2022

Formula

Let f(x) = Sum_{n >= 0} n!*x^n, g(x) = 1 - 1/f(x). Then g(x) is g.f. for first diagonal A003319 and Sum_{n >= k} T(n, k)*x^n = g(x)^k.
Triangle T(n, k), n > 0 and k > 0, read by rows; given by [0, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, ...] DELTA A000007 where DELTA is Deléham's operator defined in A084938.
T(n+k, k) = Sum_{a_1 + a_2 + ... + a_k = n} A003319(a_1)*A003319(a_2)*...*A003319(a_k). T(n, k) = 0 if n < k, T(n, 1) = A003319(n) and for n >= k T(n, k)= Sum_{j>=1} T(n-j, k-1)* A003319(j). A059438 is formed from the self convolution of its first column (A003319). - Philippe Deléham, Feb 04 2004
Sum_{k>0} T(n, k) = n!; see A000142. - Philippe Deléham, Feb 05 2004
If g(x) = x + x^2 + 3*x^3 + 13*x^4 + ... is the generating function for the number of permutations with no global descents, then 1/(1-g(x)) is the generating function for n!. Setting t=1 in f(x, t) implies Sum_{k=1..n} T(n,k) = n!. Let g(x) be the o.g.f. for A003319. Then the o.g.f. for this table is given by f(x, t) = 1/(1 - t*g(x)) - 1 (i.e., the coefficient of x^n*t^k in f(x,t) is T(n,k)). - Mike Zabrocki, Jul 29 2004

Extensions

More terms from Vladeta Jovovic, Mar 04 2001