A059443 Triangle T(n,k) (n >= 2, k = 3..n+floor(n/2)) giving number of bicoverings of an n-set with k blocks.
1, 4, 4, 13, 39, 25, 3, 40, 280, 472, 256, 40, 121, 1815, 6185, 7255, 3306, 535, 15, 364, 11284, 70700, 149660, 131876, 51640, 8456, 420, 1093, 68859, 759045, 2681063, 3961356, 2771685, 954213, 154637, 9730, 105, 3280, 416560, 7894992, 44659776, 103290096
Offset: 2
Examples
T(2,3) = 1: 1|12|2. T(3,3) = 4: 1|123|23, 12|13|23, 12|123|3, 123|13|2. T(3,4) = 4: 1|12|23|3, 1|13|2|23, 1|123|2|3, 12|13|2|3. Triangle T(n,k) begins: : 1; : 4, 4; : 13, 39, 25, 3; : 40, 280, 472, 256, 40; : 121, 1815, 6185, 7255, 3306, 535, 15; : 364, 11284, 70700, 149660, 131876, 51640, 8456, 420; : 1093, 68859, 759045, 2681063, 3961356, 2771685, 954213, 154637, 9730, 105; ...
References
- L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 303, #40.
- I. P. Goulden and D. M. Jackson, Combinatorial Enumeration, John Wiley and Sons, N.Y., 1983.
Links
- Alois P. Heinz, Rows n = 2..60, flattened
- L. Comtet, Birecouvrements et birevĂȘtements d'un ensemble fini, Studia Sci. Math. Hungar 3 (1968): 137-152. [Annotated scanned copy. Warning: the table of v(n,k) has errors.]
Crossrefs
Programs
-
Mathematica
nmax = 8; imax = 2*(nmax - 2); egf := E^(-x - 1/2*x^2*(E^y - 1))*Sum[(x^i/i!)*E^(Binomial[i, 2]*y), {i, 0, imax}]; fx = CoefficientList[ Series[ egf , {y, 0, imax}], y]*Range[0, imax]!; row[n_] := Drop[ CoefficientList[ Series[fx[[n + 1]], {x, 0, imax}], x], 3]; Table[ row[n], {n, 2, nmax}] // Flatten (* Jean-François Alcover, Sep 21 2012 *)
-
PARI
\ps 22; s = 8; pv = vector(s); for(n=1,s,pv[n]=round(polcoeff(f(x,y),n,y)*n!)); for(n=1,s,for(m=3,poldegree(pv[n],x),print1(polcoeff(pv[n],m),", "))) \\ Gerald McGarvey, Dec 03 2009
Formula
E.g.f. for m-block bicoverings of an n-set is exp(-x-1/2*x^2*(exp(y)-1))*Sum_{i=0..inf} x^i/i!*exp(binomial(i, 2)*y).
T(n, k) = Sum{j=0..n} Stirling2(n, j) * A060052(j, k). - David Pasino, Sep 22 2016
Extensions
More terms and additional comments from Vladeta Jovovic, Feb 14 2001
a(37) corrected by Gerald McGarvey, Dec 03 2009