A059447 Smallest number that takes n steps to get to 1 under the map f(n)=sigma(n)-n, the sum of the proper divisors.
1, 2, 4, 9, 14, 16, 12, 34, 52, 90, 60, 66, 54, 42, 30, 126, 114, 102, 624, 760, 680, 580, 540, 748, 740, 520, 672, 408, 666, 360, 264, 546, 510, 330, 318, 2960, 2574, 1782, 1494, 3672, 3114, 2790, 1680, 1386, 1374, 930, 612, 594, 582, 378, 366, 180, 3570
Offset: 0
Examples
a(4)=14 since 14->10->8->7->1 and no smaller number takes 4 steps.
Links
- T. D. Noe, Table of n, a(n) for n = 0..150
Crossrefs
Cf. A003023 (length of aliquot sequence for n).
Programs
-
Mathematica
f[n_] := DivisorSigma[1, n] - n; f[1] = 1; a[n_] := Catch[For[k = 1, True, k++, nl = NestList[f, k, n]; p = Position[nl, 1, 1, 1]; If[p != {}, If[p[[1, 1]] - 1 == n, Throw[k]]]]]; Table[a[n], {n, 0, 52}] (* Jean-François Alcover, Feb 01 2013 *)
Extensions
More terms from T. D. Noe, Nov 27 2006